Studying high-density baryonic matter at J-PARC Heavy-Ion Project
Hiroyuki Sako (JAEA / U. Tsukuba) for J-PARC-HI Collaboration
Goals of J-PARC-HI (I)

Exploring dense matter

- Search for QCD Phase structures
 - 1st order phase transition, QCD Critical Point, Color superconductor
 - Event-by-event fluctuations, dileptons

- Properties of dense matter
 - Maximum density, EOS, transport properties (viscosity), etc.
 - Flow
 → Studies of neutron stars

- Chiral symmetry restoration
 - Medium modification of vector mesons
 - Dileptons

QCD Phase diagram

Exploring dense matter

Search for QCD Phase structures
- 1st order phase transition, QCD Critical Point, Color superconductor
- Event-by-event fluctuations, dileptons

Properties of dense matter
- Maximum density, EOS, transport properties (viscosity), etc.
- Flow
 → Studies of neutron stars

Chiral symmetry restoration
- Medium modification of vector mesons
- Dileptons
Goals of J-PARC-HI (II)

Studies of multi-strangeness production

- Efficient production of strangeness at J-PARC
- Search for rare multi-strangeness systems
 - Hypernuclei, strangelet, dibaryons, etc.
- Study of hyperon interactions
 - Femtoscopy
 → EOS of strange hadronic/quark matter

Hypernuclei

\[
\text{J-PARC-HI}\]

\[K^+ / \pi^+\]

\[
\text{Yield (dN/dy) at 100 GeV}
\]

A. Andronic, PLB697 (2011) 203

\[\Lambda\Lambda \text{ correlation function}\]

A. Andronic, PLB697 (2011) 203

STAR, PRL114 (2015) 022301
Accelerators and experiments for J-PARC-HI

HI Booster Ring
- **Phase 1:** KEK-PS booster (10^8Hz) (~2026)
- **Phase 2:** New booster (10^{11}Hz) (~2032)

Hadron Experimental Facility

- **HI beam rate** $\sim 10^{11}$ Hz (World’s highest intensity beam)
- **$E_{\text{lab}}(U) = 1$-12 AGeV**
- **$\sqrt{s_{\text{NN}}}(U) = 1.9$-4.9 GeV**

Proton beam line
- **H Linac:** 0.4 GeV
- **U$^{66+}$** → 67 AMeV
- **U$^{86+}$** → 735 AMeV
- **U$^{92+}$** → 11.2 AGeV
- **3 GeV RCS (p)**
- **0.4 → 3 GeV**
- **MLF**
- **p/HI**
- **proton (existing)**
- **HI (under plan)**

Extended proton beam line
- **Beam dump**
- **Radiation shield**

J-PARC-HI spectrometer

1. **p+A experiment (E16) (2020-)**
 - Baseline data and detector R&D for HIC
2. **Phase-I (10^8Hz)**
 - Upgraded E16
3. **Phase-II (10^{11}Hz)**
 - Large acceptance spectrometer
Di-electron measurement at Phase I

Proposal submitted in July 2022
T with ~6% stat. errors can be expected from $M_{ee} > 1.1$ GeV/c2 of $T \sim 150$ MeV

Upgraded E16 spectrometer (p+A) for HIC
- Forward trackers
- EM calorimeter: PbGl→PWO$_4$
- Zero degree calorimeter

100 days run, 0.1% sys error assumed for combinatorial background subtraction (PHENIX, ALICE)

P. Senger, CBM, Particles 2020, 3(2), 320-335
Phase II experiments

- Identified charged particles \(\Leftrightarrow \) Dimuon
- \(\sim 4\pi \) acceptance
 - Silicon Pixel Tracker and TPC
 - Pb absorbers and GEM trackers
 - MRPC-TOF
- Interaction rate : \(\leq 10 \) MHz
 - Triggerless DAQ system
- Centrality : Multiplicity counter + Zero-degree calorimeter
- Hypernuclei with closed geometry setup

Summary and outlook

J-PARC-HI : Studies of QCD phase structures of dense matter and multi-strangeness systems with world’s highest-rate HI beam of \(10^{11} \) Hz

Measurements of fluctuations, dileptons, and multi-strangeness systems

Staging: \(p+A \rightarrow A+A \) at Upgraded E16 (Phase I) \(\rightarrow \) Large acceptance spectrometer (Phase II)
 - Di-electron experiment in \(p+A \) (E16) started in 2020 (Talk by M. Ichikawa (Apr. 7))
 - \(\phi \rightarrow K^+K^- \) in \(p+A \) (E88) being prepared (Poster 3T 11_1 by S. Sato (Apr. 8))
 - First experimental proposal submitted (July 2021) (Poster 3T 15_2 by Y. Morino (Apr. 8))

Aiming for the start of the Phase-I experiment after Hadron Hall Extension (~2026)