

Measurement of the hypertriton properties and production with ALICE

Francesco Mazzaschi ^{1, 2} on behalf of the ALICE Collaboration Quark Matter 2022, Kraków, 07/04/2022

Università degli Studi di Torino¹, INFN Torino²

Hypertriton (³_AH)

- Lightest known hypernucleus
 - bound state of a neutron, a proton and a Λ
 - discovered in early 50s by Polish physicists
 - M. Danysz and J. Pniewski¹
- ${}^3_{\Lambda}$ H approximated as a bound state of a deuteron and a Λ with an expected radius of ~ 10 fm ²
 - \circ two-body halo nucleus
- Unique probe for understanding the Λ -nucleus interaction
 - strong implications for astro-nuclear physics
 - hyperons expected to be produced in the inner core of neutron stars³

 $R_{\rm d-\Lambda}$

¹ M. Danysz, J. Pniewski, Philos. Mag. 44, 348, (1953)
 ² Hildenbrand F. et al., Phys. Rev. C, 100(3), 034002 (2019)
 ³ Tolos L. et al., Progress in Particle and Nuclear Physics, 112 (2020)

"deuteron" core

³ H in ALICE

³ H in large systems (Pb-Pb collisions): lifetime and B_{Λ}

- ${}^{3}_{\Lambda}$ H lifetime and B_{Λ} reflect its structure
 - Most of the theoretical models assume $B_{\Lambda} \approx 130 \text{ keV}$ and predict lifetime close to the free Λ one
 - latest models based on EFT give lifetime predictions as a function of the B_{Λ}
- recent results suggest that ³ H could Ο be more compact than expected ^{1, 2}
 - precise measurements required to shed light on the ${}^{3}_{\Lambda}H$ structure
 - ¹ STAR, Phys. Rev. C 97, 5, 054909 (2018) ² STAR, Nature Physics 16, 409–412 (2020)

- $\Gamma_{^{3}\mathrm{He}}/(\Gamma_{^{3}\mathrm{He}}+\Gamma_{nd}^{^{\Lambda}})$ $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$ $1.1 \ 1.2 \ 1.3 \ 1.4 \ 1.5$ B_{Λ} [MeV] $\Lambda_{\mu\nu}$ B_{Λ} (keV) 800 69 900 135 1000 159 410

Hildenbrand F. et al., Physical Review C, vol. 102, no. 6 (2020)

 Γ_{Λ} Γ_{Nd}^{FSI}

 $\Gamma_{3H_o} + \Gamma_{3H}$

 τ (ps)

 234 ± 27

190 + 22

180±21

163±18

Pérez-Obiol A... Physics Letters B. vol. 811 (2020)

Quark Matter 2022, Kraków, 07/04/2022

1.2

 $\Gamma_i/\Gamma_{\Lambda}$

0.6

0.4

0.2

³ H in ALICE

³ H production in small systems (pp and p-Pb collisions)

- loosely bound nature of ${}^3_{\Lambda}$ H has strong implications for its production mechanism
 - thermal (SHM)¹ and coalescence²
 predictions well separated at low
 charged-particle multiplicity density
 - coalescence relies on the radius of the particle while SHM don't
- ³ A production in pp and p-Pb is a key to understand the nuclear production mechanism in hot and dense matter
- ¹ Vovchenko, et al., *Phys. Lett., B785, 171-174,* (2018)
- ² Sun. et al., *Phys. Lett. B*, 792, 132–137, (2019)

Francesco Mazzaschi

Hypertriton in large systems Precision measurements of lifetime and B, in Pb-Pb collisions

We can identify the hypertriton daughter particles (³He and π⁻) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

ALICE

 We can identify the hypertriton daughter particles (³He and π⁻) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

We can identify the hypertriton daughter particles (³He and π^-) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

We can identify the hypertriton daughter particles (³He and π^-) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

ALICE

We can identify the hypertriton daughter particles (³He and π^{-}) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

³ H in large systems

- Analysed data sample:
 - Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV collected by ALICE in 2018
- ³ _ΛH candidate: ³He + π⁻ pairs (and related charge conjugated states)
- Secondary vertex reconstruction

 matching of ³He + π⁻ tracks coming from a common vertex
- Huge combinatorial background

³ H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

- BDT output (independent trainings for each bin) :
 - Score related to the probability of the candidate to be signal or background

ALI-SIMUL-316844

³ H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

- Selection applied on the BDT score
 - maximisation of the expected significance (assuming thermal production)

ALI-SIMUL-316844

Signal extraction

- Signal extracted with a fit to the invariant mass spectrum of the selected candidates
- high significance over a wide range
 - 9 ct bins from 1 to 35 cm \bigcirc

- Corrected *c*t spectrum fitted with an exponential function
- Lifetime value from the fit
 - Statistical uncertainty ~ 6%
 - Systematic uncertainty ~ 7%
- Most precise measurement of the lifetime ever done so far

³ H Lifetime

- Most precise measurement
- Compatible with latest STAR measurement
- Models predicting a lifetime close to the free Λ one are favoured
 - strong hint that hypertriton is weakly bound, but B_{Λ} is still needed to solve the puzzle

 \geq 2020 models: assuming B_A = 70 keV < 2020 models: assuming B_A = 130 keV

³ H Mass

ALICE

- Same signal extraction technique and ct bins used for the lifetime: precise mass measurement needed to obtain B_{Λ}
- Extremely precise measurement
 - 0.0016% stat.
- Systematic uncertainty of ~100 keV (0.003%)

- From the mass measurement to B_{Λ}
 - $\circ ~~~B_{\Lambda}=M_{\Lambda}+M_{
 m d}-M_{_{\Lambda}{}^{
 m M}{
 m H}}$
- Weakly bound nature of ³_AH is confirmed by the latest ALICE measurement
 - \circ B_{Λ} compatible with zero
 - in agreement within 1σ with Dalitz and χ EFT based predictions
 - fully consistent with the lifetime measurement according to recent theoretical calculations ^{1,2}

¹ Hildenbrand F. et al., *Physical Review C*, vol. 102, no. 6, Dec. 2020

² Pérez-Obiol A., *Physics Letters B*, vol. 811, Dec. 2020

Hypertriton in small systems First measurements of ³ H production in pp and p-Pb collisions

Francesco Mazzaschi

Quark Matter 2022, Kraków, 07/04/2022

New @ QM

3 H selection in pp and p-Pb collisions

- Data samples:
 - pp at $\sqrt{s} = 13$ TeV and p-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV collisions collected during Run 2
- ³ ^A H selection in pp: trigger on high multiplicity events using V0 detectors + topological cuts on triggered events
- ³ _AH selection in p-Pb: 40% most central collisions + BDT Classifier
- Significance > 4σ both in pp and p-Pb

${}^{3}_{\Lambda}H / \Lambda$ in pp and p-Pb collisions

New @ QM

- ${}^{3}_{\Lambda}H / \Lambda$ in small systems:
 - large separation between production models
 - measurements in good agreement with 2-body coalescence ²
 - tension with SHM¹ at low charged-particle multiplicity density
 - configuration with $V_c = 3dV/dy$ is excluded at level of more than 6σ

ALICE, arXiv:2107.10627 (2021)

¹ Vovchenko, et al., *Phys. Lett.*, *B785*, *171-174*, (2018)
 ² Sun. et al., *Phys. Lett. B*, *792*, *132–137*, (2019)

S_3 in pp and p-Pb collisions

New @ QM

- S_3 : strangeness population factor $({}^3_{\Lambda}\mathrm{H}/{}^3\mathrm{He})/(\Lambda/\mathrm{p})$
- S_3 in small systems:
 - same conclusions as for ${}^3_{\Lambda}H / \Lambda$ but with a lower sensitivity
 - Run 3 will be crucial to finally Ο distinguish between SHM¹ and coalescence² and explore the multiplicity dependence of S_3 !

¹ 📕 Vovchenko, et al., *Phys. Lett., B785, 171-174,* (2018) ² Sun. et al., *Phys. Lett. B*, 792, 132–137, (2019)

- ${}^{3}_{\Lambda}$ H in large systems:
 - precise measurements of lifetime and B_{Λ} in Pb-Pb collisions
 - weakly bound nature of ${}^{3}_{\Lambda}$ H confirmed
- ${}^{3}_{\Lambda}$ H in small systems:
 - \circ first measurement of ${}^{3}_{\Lambda}$ H production in pp and p-Pb collisions
 - concrete possibility to distinguish with high significance between the two nucleosynthesis mechanisms
 - it will be possible in Run 3!

Thanks for your attention!

Backup

Precision measurement of the Λ lifetime

PDG

Ο

Ο

 \bigcirc

Expected S_3 performance for Run 3

ALICE Run 3 pp program public note