Measurement of the hypertriton properties and production with ALICE

Francesco Mazzaschi1,2

on behalf of the ALICE Collaboration

Quark Matter 2022, Kraków, 07/04/2022

Università degli Studi di Torino 1, INFN Torino 2
Hypertriton \((^3\Lambda H)^\)

- Lightest known hypernucleus
 - bound state of a neutron, a proton and a \(\Lambda\)
 - discovered in early 50s by Polish physicists
 - M. Danysz and J. Pniewski \(^1\)

- \(^3\Lambda H\) approximated as a bound state of a deuteron and a \(\Lambda\) with an expected radius of \(\sim 10\) fm \(^2\)
 - two-body halo nucleus

- Unique probe for understanding the \(\Lambda\)-nucleus interaction
 - strong implications for astro-nuclear physics
 - hyperons expected to be produced in the inner core of neutron stars \(^3\)

3. Tolos L. et al., Progress in Particle and Nuclear Physics, 112 (2020)
3\textsubscript{Λ}H in ALICE

3\textsubscript{Λ}H in large systems (Pb-Pb collisions): lifetime and B_{Λ}

- 3\textsubscript{Λ}H lifetime and B_{Λ} reflect its structure
 - Most of the theoretical models assume $B_{\Lambda} \approx 130$ keV and predict lifetime close to the free Λ one
 - Latest models based on EFT give lifetime predictions as a function of the B_{Λ}
- Recent results suggest that 3\textsubscript{Λ}H could be more compact than expected1,2
 - Precise measurements required to shed light on the 3\textsubscript{Λ}H structure

\begin{center}
\begin{tabular}{ccc}
Λ_{uv} & B_{Λ} (keV) & τ (ps) \\
800 & 69 & 234±27 \\
900 & 135 & 190±22 \\
1000 & 159 & 180±21 \\
- & 410 & 163±18 \\
\end{tabular}
\end{center}

1 STAR, Phys. Rev. C 97, 5, 054909 (2018)
2 STAR, Nature Physics 16, 409–412 (2020)
$^3\Lambda\bar{H}$ production in small systems (pp and p-Pb collisions)

- Loosely bound nature of $^3\Lambda\bar{H}$ has strong implications for its production mechanism:
 - thermal (SHM)\(^1\) and coalescence\(^2\) predictions well separated at low charged-particle multiplicity density
 - Coalescence relies on the radius of the particle while SHM don’t

- $^3\Lambda\bar{H}$ production in pp and p-Pb is a key to understand the nuclear production mechanism in hot and dense matter

Hypertriton in large systems

Precision measurements of lifetime and B_Λ in Pb-Pb collisions
The ALICE detector

- We can identify the hypertriton daughter particles (^3He and π^-) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus.
The ALICE detector

- We can identify the hypertriton daughter particles (^3He and π^-) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus.

Inner Tracking System
- Track reconstruction
- Reconstruction of primary and decay vertices
- PID of low momentum particles
The ALICE detector

- We can identify the hypertriton daughter particles (3He and π^-) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus.

Time Projection Chamber
- Tracking
- PID via specific energy loss
The ALICE detector

- We can identify the hypertriton daughter particles (\(^3\text{He}\) and \(\pi^-\)) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus.

Time Of Flight detector
- Particle identification with time-of-flight
We can identify the hypertriton daughter particles (^3He and π^-) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus.
$^3\Lambda^\Lambda$ in large systems

- Analysed data sample:
 - Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV collected by ALICE in 2018

- $^3\Lambda^\Lambda$ candidate: $^3\text{He} + \pi^-$ pairs (and related charge conjugated states)

- Secondary vertex reconstruction
 - matching of $^3\text{He} + \pi^-$ tracks coming from a common vertex

- Huge combinatorial background
H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

- BDT output (independent trainings for each bin):
 - **Score** related to the probability of the candidate to be signal or background
H selection: machine learning approach

- Selection applied on the BDT score
 - maximisation of the expected significance (assuming thermal production)

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample
Signal extraction

- Signal extracted with a fit to the invariant mass spectrum of the selected candidates
- High significance over a wide range
 - 9 ct bins from 1 to 35 cm
• Corrected ct spectrum fitted with an exponential function
• Lifetime value from the fit
 ○ Statistical uncertainty ~ 6%
 ○ Systematic uncertainty ~ 7%
• Most precise measurement of the lifetime ever done so far
Most precise measurement

Compatible with latest STAR measurement

Models predicting a lifetime close to the free Λ one are favoured

 strong hint that hypertriton is weakly bound, but B_{Λ} is still needed to solve the puzzle

\[
\begin{align*}
\geq 2020 \text{ models: assuming } B_{\Lambda} &= 70 \text{ keV} \\
< 2020 \text{ models: assuming } B_{\Lambda} &= 130 \text{ keV}
\end{align*}
\]
- Same signal extraction technique and ct bins used for the lifetime: precise mass measurement needed to obtain B_Λ
- Extremely precise measurement
 - 0.0016% stat.
- Systematic uncertainty of ~100 keV (0.003%)
• From the mass measurement to B_Λ
 ○ $B_\Lambda = M_\Lambda + M_d - M_{^3\Lambda H}^3$
• Weakly bound nature of $^3\Lambda H$ is confirmed by the latest ALICE measurement
 ○ B_Λ compatible with zero
 ○ in agreement within 1σ with Dalitz and χEFT based predictions
 ○ fully consistent with the lifetime measurement according to recent theoretical calculations $^1,^2$

1 Hildenbrand F. et al., Physical Review C, vol. 102, no. 6, Dec. 2020
Hypertriton in small systems
First measurements of $^3_\Lambda$H production in pp and p-Pb collisions
3\(^\Lambda\) H selection in pp and p-Pb collisions

- Data samples:
 - pp at \(\sqrt{s} = 13\) TeV and p-Pb at \(\sqrt{s_{NN}} = 5.02\) TeV collisions collected during Run 2

- 3\(^\Lambda\) H selection in pp: trigger on high multiplicity events using V0 detectors + topological cuts on triggered events

- 3\(^\Lambda\) H selection in p-Pb: 40% most central collisions + BDT Classifier

- Significance > 4\(\sigma\) both in pp and p-Pb
$^3\Lambda$H / Λ in pp and p-Pb collisions

- $^3\Lambda$H / Λ in small systems:
 - large separation between production models
 - measurements in good agreement with 2-body coalescence
 - tension with SHM at low charged-particle multiplicity density
 - configuration with $V_C = 3dV/dy$ is excluded at level of more than 6σ

References:
S_3 in pp and p-Pb collisions

- S_3: strangeness population factor
 $$\left(\frac{^3\Lambda \text{H}}{^3\text{He}}\right) / (\Lambda / p)$$

- S_3 in small systems:
 - same conclusions as for $^3\Lambda \text{H} / \Lambda$ but with a lower sensitivity
 - Run 3 will be crucial to finally distinguish between SHM \(^1\) and coalescence \(^2\) and explore the multiplicity dependence of S_3!

Francesco Mazzaschi
Quark Matter 2022, Kraków, 07/04/2022
Summary and perspectives

- $^3\Lambda^1\text{H}$ in large systems:
 - precise measurements of lifetime and B^Λ in Pb-Pb collisions
 - weakly bound nature of $^3\Lambda^1\text{H}$ confirmed

- $^3\Lambda^1\text{H}$ in small systems:
 - first measurement of $^3\Lambda^1\text{H}$ production in pp and p-Pb collisions
 - concrete possibility to distinguish with high significance between the two nucleosynthesis mechanisms
 - it will be possible in Run 3!

Thanks for your attention!
Precision measurement of the Λ lifetime

- Precision measurement of the Λ lifetime in ALICE
 - factor 3 more precise than the current world average taken from the PDG
 - important reference for hypertriton
 - confirms the excellent capabilities of the ALICE detector for lifetime measurements
Expected S_3 performance for Run 3

ALICE Run 3 pp program public note