

L. Dello Stritto (University and INFN Salerno, Italy) on behalf of the ALICE Collaboration

Krakow, 04–10 April 2022

- Similarities between measurements performed in high multiplicity events in pp and p–Pb collisions and heavy-ion collisions has been observed at the LHC:
 <u>Nature Physics 13, 535–539 (2017)</u>
 - Strangeness enhancement in the light flavour sector

- Similarities between measurements performed in high multiplicity events in pp and p–Pb collisions and heavy-ion collisions has been observed at the LHC:
 <u>Nature Physics 13, 535–539 (2017)</u>
 - Strangeness enhancement in the light flavour sector
 - Collectivity (ridge formation)

- Similarities between measurements performed in high multiplicity events in pp and p–Pb collisions and heavy-ion collisions has been observed at the LHC:
 <u>Nature Physics 13, 535–539 (2017)</u>
 - Strangeness enhancement in the light flavour sector
 - Collectivity (ridge formation)

What about the charm-hadron production measurements as a function of multiplicity?

Medium-like properties in small systems?

Luigi Dello Stritto, QM 2022, Krakow (Poland)

₽₽₽

• Measurements of heavy-flavour production as a function of the event activity allow us to investigate:

- interplay between the hard and soft particle production
- role of multiparton interactions (MPI)
- colour-reconnection (CR) mechanisms
- hadronization mechanisms: evolution from small to large systems?

The ALICE detector

...........

- Primary and decay vertices reconstruction
- Tracking
- PID via d*E*/dx
- Multiplicity measurement with the Silicon Pixel Detectors (SPD)

V0 detectors:

Centrality

Multiplicity estimator

Time of Flight:

Particle Identification via time-of-flight measurements

Time Projection Chamber:

Track reconstruction

PID via dE/dx

•

Heavy-flavour self-normalized yield

- Faster than linear increase with charged-particle multiplicity.
 - MPI introduce a correlation between heavyflavour yields and charged-particle production but in models like Pythia and EPOS cannot explain such a high increase.

 Contribution from autocorrelation between heavyflavour yield and charged-particle multiplicity.
 Weber et al, EPJ C 79, 36 (2019)

Luigi Dello Stritto, QM 2022, Krakow (Poland)

D meson self-normalized yield

- **EPOS3 without hydro** = particle production via flux tubes expansion and fragmentation. 1 flux tube for each PI.
 Underestimates the results
- **EPOS3 with hydro** = string formation followed by a hydrodynamical evolution.
 - Describes the faster than linear increase, reduces multiplicity

Werner et al, Phys. Rev. C 89.064903 (2014)

-

-

- **3-pomeron CGC** (Colour Glass Condensate) = meson production via three pomerons (gluon shower) fusion.
 - Overpredicts the experimental data

Schmidt & Siddikov, Phys. Rev. D 101.094020 (2020)

ALI-PREL-488879

D meson self-normalized yields vs spherocity

• The **transverse spherocity** (S_0) allows isolating D-meson production in jetty and isotropic events.

$$S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i \vec{p}_{T_i} \times \hat{n}}{\sum_i p_{T_i}} \right)^2$$

Jetty ($S_0 \rightarrow 0$) Isotropic ($S_0 \rightarrow 1$)

• D-meson production from jetty-like events dominates in high p_{T} intervals.

D meson self-normalized yields vs spherocity

• Hint of enhancement of D-meson production from jetty-like events at high multiplicity.

 Significant (5.3σ) dependence on multiplicity in 1 ≤ p_T < 12 GeV/c.

- Λ_c^+/D^0 ratios in pp are enhanced w.r.t. e^+e^- collisions, also in the lowest multiplicity interval.
 - Fragmentation fractions of charm quarks are not a universal process among different collision systems.

- **PYTHIA CR-BLC** = string formation beyond the leading colour approximation. Baryon production enhanced via junction. Christiansen & Skands, JHEP 1508 (2015) 003 $q = \frac{q}{a} \rightarrow \frac{q}{a}$
- CE-SH + RQM = canonical ensemble statistical hadronization model including feed-down from additional excited baryon states predicted by the Relativistic Quark Model (RQM). <u>Hee & Rapp, PLB 795 117-121 (2019)</u>

 With the current precision, no evidence of multiplicity dependence of Λ_c⁺/D⁰ p_T spectra from the lowest to the highest multiplicity interval in p–Pb.

• Compatible results in pp and p-Pb highmultiplicity intervals.

 With the current precision, no evidence of multiplicity dependence of Λ_c⁺/D⁰ p_T spectra from the lowest to the highest multiplicity interval in p–Pb.

• Compatible results in pp and p-Pb highmultiplicity intervals.

- The p_T -integrated Λ_c⁺/D⁰ ratio vs multiplicity in pp, p–Pb and Pb–Pb measurements are compatible with each other.
- Re-distribution of p_T that acts differently for baryons and mesons. No modification of overall p_T -integrated yield.

Same mechanism in all collision systems? Modified hadronization? Radial flow?

Prompt D_s^+/D^0 strange to non-strange meson ratio

- D_s^+/D^0 ratios are p_T independent in the measured p_T range.
- Dependence of D_s⁺/D⁰ ratio on multiplicity not observed within the uncertainties.
- The results are comparable with the measurements performed in e⁺e⁻ collisions.

- D_s^+/D^0 ratios compatible with **PYTHIA Monash** and **CR-BLC**.
- The CE-SH model describes the low multiplicity D_s⁺/D⁰ measurement, but it overestimates the data in the highest multiplicity interval.

Luigi Dello Stritto, QM 2022, Krakow (Poland)

Heavy-flavour decay muon elliptic-flow

- in central events. p–Pb Positive v_2 Possibility of collective phenomena in high-multiplicity p-Pb collisions.
- Dominant contribution Of muons from heavy-flavour hadron decays is expected at $p_{\rm T} > 2 \, {\rm GeV}/c.$
- Participation of heavy quarks the in collective expansion of the system?

10

Conclusions

- Extension to a larger p_T interval of the heavy-flavour decay muon elliptic flow coefficient measurement in high-multiplicity p-Pb collisions.
- Λ_c^+/D^0 ratios in pp collisions are enhanced w.r.t. e⁺e⁻ collisions also in the lowest multiplicity class.

• Prompt $\Lambda_c^+/D^0 p_T$ -integrated ratio trend is multiplicity independent and compatible in pp, p–Pb and Pb–Pb collisions. Hint of heavy-flavour collectivity in small systems.

Different hadronization mechanisms at play?

Further measurements needed to constrain the role of hadronization mechanisms and radial flow.

- Run 2: qualitative discovery of surprising phenomena similar to that originated from medium effects in small systems.
- Run 3: ALICE detector upgrade in LS2. Quantitative understanding of the microscopic mechanisms at play.
 Stay tuned on the upcoming Run 3!

More on heavy flavour production

Xinye Peng – 6th April, h 12:10*

"Beauty production in heavy-ion collisions with ALICE at the LHC"

Lucas Anne Vermunt – 7th April, h 09:00*

"Charm production: constraint to transport models and charm diffusion coefficient with ALICE"

Mattia Faggin – 7th April, h 11:10*

"Constraining hadronization processes with charm baryons in pp and p-Pb collisions with ALICE"

Baryon-to-meson ratio

- Similar trend as a function of multiplicity for light- and heavy-flavour baryon-to-meson ratios, $\Lambda/K_s{}^0$ and $\Lambda_c{}^+\!/D^0$.
- Hint of a potential common mechanism for light- and charm-baryon formation in hadronic collisions at LHC energies.

Integrated prompt Λ_c^+/D^0 baryon-to-meson ratio

