Heavy-flavour production as a function of the event activity with ALICE

L. Dello Stritto (University and INFN Salerno, Italy) on behalf of the ALICE Collaboration

Krakow, 04–10 April 2022
Physics motivations

- Similarities between measurements performed in high multiplicity events in pp and p–Pb collisions and heavy-ion collisions has been observed at the LHC:
 - Strangeness enhancement in the light flavour sector

Nature Physics 13, 535–539 (2017)
Physics motivations

- Similarities between measurements performed in high multiplicity events in pp and p–Pb collisions and heavy-ion collisions has been observed at the LHC:
 - Strangeness enhancement in the light flavour sector
 - Collectivity (ridge formation)

Physics motivations

- Similarities between measurements performed in high multiplicity events in pp and p–Pb collisions and heavy-ion collisions has been observed at the LHC:
 - Strangeness enhancement in the light flavour sector
 - Collectivity (ridge formation)

Medium-like properties in small systems?

What about the charm-hadron production measurements as a function of multiplicity?

Physics motivations

- Measurements of heavy-flavour production as a function of the event activity allow us to investigate:
 - interplay between the hard and soft particle production
 - role of multiparton interactions (MPI)
 - colour-reconnection (CR) mechanisms
 - hadronization mechanisms: evolution from small to large systems?
The ALICE detector

Time Projection Chamber:
- Track reconstruction
- PID via dE/dx

Time of Flight:
- Particle Identification via time-of-flight measurements

Inner Tracking System:
- Primary and decay vertices reconstruction
- Tracking
- PID via dE/dx
- Multiplicity measurement with the Silicon Pixel Detectors (SPD)

V0 detectors:
- Multiplicity estimator
- Centrality
Heavy-flavour self-normalized yield

- Faster than linear increase with charged-particle multiplicity. MPI introduce a correlation between heavy-flavour yields and charged-particle production but in models like Pythia and EPOS cannot explain such a high increase.

D meson self-normalized yield

- **EPOS3 without hydro** = particle production via flux tubes expansion and fragmentation. 1 flux tube for each PI. ➔ **Underestimates the results**

- **EPOS3 with hydro** = string formation followed by a hydrodynamical evolution.
 ➔ **Describes the faster than linear increase, reduces multiplicity**

- **3-pomeron CGC** (Colour Glass Condensate) = meson production via three pomerons (gluon shower) fusion.
 ➔ **Overpredicts the experimental data**
D meson self-normalized yields vs spherocity

• The transverse spherocity \(S_0 \) allows isolating D-meson production in jetty and isotropic events.

\[
S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i p_{T_i} \times \hat{n}}{\sum_i p_{T_i}} \right)^2
\]

Jetty \((S_0 \rightarrow 0) \)
Isotropic \((S_0 \rightarrow 1) \)

• D-meson production from jetty-like events dominates in high \(p_T \) intervals.
D meson self-normalized yields vs spherocity

- The **transverse spherocity** (S_0) allows isolating D-meson production in jetty and isotropic events.

\[
S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i \vec{p}_{T_i} \times \hat{n}}{\sum_i p_{T_i}} \right)^2
\]

Jetty ($S_0 \rightarrow 0$)
Isotropic ($S_0 \rightarrow 1$)

- Hint of enhancement of D-meson production from jetty-like events at high multiplicity.

Randhir Singh
8th April, h 14:48
Prompt Λ_c^+/D^0 baryon-to-meson ratio

- Strong p_T dependence.
- Significant (5.3σ) dependence on multiplicity in $1 \leq p_T < 12$ GeV/c.

- Λ_c^+/D^0 ratios in pp are enhanced w.r.t. e^+e^- collisions, also in the lowest multiplicity interval.

Fragmentation fractions of charm quarks are not a universal process among different collision systems.
PYTHIA CR-BLC = string formation beyond the leading colour approximation. Baryon production enhanced via junction. Christiansen & Skands, JHEP 1508 (2015) 003

CE-SH + RQM = canonical ensemble statistical hadronization model including feed-down from additional excited baryon states predicted by the Relativistic Quark Model (RQM). Hee & Rapp, PLB 795 117-121 (2019)

Prompt Λ_c^+/D^0 baryon-to-meson ratio

https://arxiv.org/abs/2111.11948

Mattia Faggin
7th April, h 11:10

Luigi Dello Stritto, QM 2022, Krakow (Poland)
Prompt Λ_c^+/D^0 baryon-to-meson ratio

- With the current precision, no evidence of multiplicity dependence of Λ_c^+/D^0 p_T spectra from the lowest to the highest multiplicity interval in p–Pb.

- Compatible results in pp and p–Pb high-multiplicity intervals.
Prompt Λ_c^+ / D^0 baryon-to-meson ratio

With the current precision, no evidence of multiplicity dependence of Λ_c^+ / D^0 p_T spectra from the lowest to the highest multiplicity interval in p–Pb.

Compatible results in pp and p–Pb high-multiplicity intervals.
Integrated prompt Λ_c^+/D^0 baryon-to-meson ratio

- The p_T-integrated Λ_c^+/D^0 ratio vs multiplicity in pp, p–Pb and Pb–Pb measurements are compatible with each other.

- Re-distribution of p_T that acts differently for baryons and mesons. No modification of overall p_T-integrated yield.

Same mechanism in all collision systems? Modified hadronization? Radial flow?

Lucas Anne Vermunt 7th April, h 09:00
Prompt D_s^+/D^0 strange to non-strange meson ratio

- D_s^+/D^0 ratios are p_T independent in the measured p_T range.
- Dependence of D_s^+/D^0 ratio on multiplicity not observed within the uncertainties.
- The results are comparable with the measurements performed in e^+e^- collisions.

- D_s^+/D^0 ratios compatible with PYTHIA Monash and CR-BLC.

- The CE-SH model describes the low multiplicity D_s^+/D^0 measurement, but it overestimates the data in the highest multiplicity interval.

Luigi Dello Stritto, QM 2022, Krakow (Poland)
Heavy-flavour decay muon elliptic-flow

- Positive v_2 in central p–Pb events. **Possibility of collective phenomena** in high-multiplicity p–Pb collisions.

- Dominant contribution of muons from heavy-flavour hadron decays is expected at $p_T > 2$ GeV/c.

- Participation of heavy quarks in the collective expansion of the system?
Conclusions

- Extension to a larger p_T interval of the heavy-flavour decay muon elliptic flow coefficient measurement in high-multiplicity p–Pb collisions.

- Λ_c^+/D^0 ratios in pp collisions are enhanced w.r.t. e^+e^- collisions also in the lowest multiplicity class.

- Prompt Λ_c^+/D^0 p_T-integrated ratio trend is multiplicity independent and compatible in pp, p–Pb and Pb–Pb collisions.

- Run 2: qualitative discovery of surprising phenomena similar to that originated from medium effects in small systems.

- Run 3: ALICE detector upgrade in LS2. Quantitative understanding of the microscopic mechanisms at play. Stay tuned on the upcoming Run 3!

Hint of heavy-flavour collectivity in small systems.

Different hadronization mechanisms at play?

Further measurements needed to constrain the role of hadronization mechanisms and radial flow.
More on heavy flavour production

➢ **Xinye Peng** – 6th April, h 12:10*
 “Beauty production in heavy-ion collisions with ALICE at the LHC”

➢ **Lucas Anne Vermunt** – 7th April, h 09:00*
 “Charm production: constraint to transport models and charm diffusion coefficient with ALICE”

➢ **Mattia Faggin** – 7th April, h 11:10*
 “Constraining hadronization processes with charm baryons in pp and p–Pb collisions with ALICE”

*CEST timezone
Baryon-to-meson ratio

- Similar trend as a function of multiplicity for light- and heavy-flavour baryon-to-meson ratios, Λ/K_S^0 and Λ_c^+/D^0.

- Hint of a potential common mechanism for light- and charm-baryon formation in hadronic collisions at LHC energies.
Integrated prompt Λ_c^+/D^0 baryon-to-meson ratio