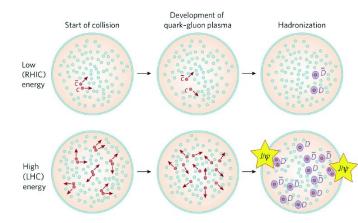
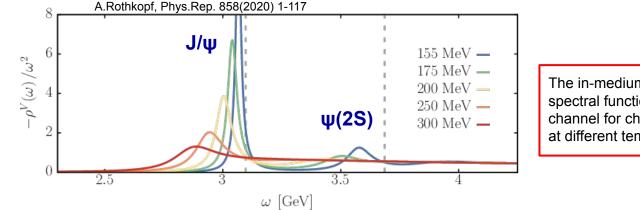
Charmonium production in Pb–Pb collisions with ALICE

Jon-Are Sætre on behalf of the ALICE Collaboration University of Bergen (NO)

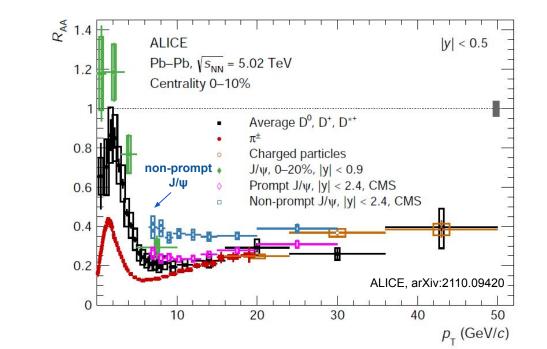

Quark Matter - April 4th to 10th, 2022

Outline


- Physics motivation
- J/ ψ and ψ (2S) nuclear modification factor (R_{AA})
- Open to hidden charm ratio
- Open beauty R_{AA} via non-prompt J/ ψ
- Conclusions

Charmonium production as probe of QGP in heavy-ion collisions

- Sequential dissociation \rightarrow expectation of stronger suppression for $\psi(2S)$ w.r.t J/ ψ
- (Re)generation of charmonium states at the LHC energies, at the phase boundary and/or during the QGP phase
- Charmonium excited-to-ground state ratios useful to disentangle between the two regeneration scenarios


Braun-Munzinger, P., Stachel, J. The quest for the quark–gluon plasma. *Nature* 448, 302–309 (2007)

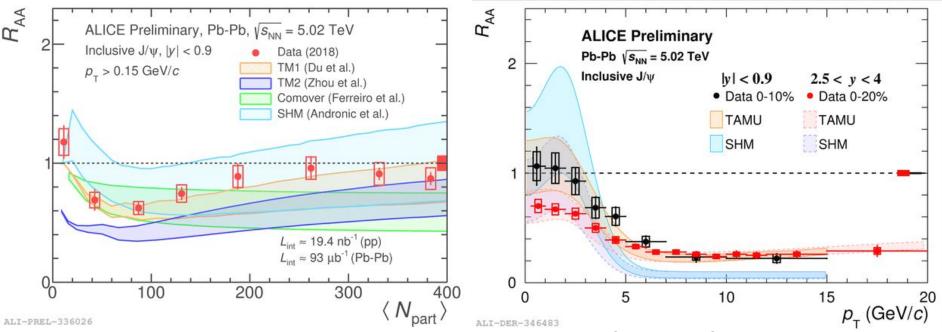
The in-medium heavy quarkonium spectral functions in the S-wave channel for charmonium evaluated at different temperatures

Measuring Beauty via non-prompt J/ψ

- A sizeable fraction of charmonia comes from beauty hadron decays
 → possibility to access open heavy-flavor production!
- Heavy quarks, charm and beauty, produced early in heavy-ion collisions via hard parton-parton scatterings → lose energy in the QGP via collisional and radiative processes
 - Dead cone effect reduces radiative losses for beauty

Mass dependence of parton energy loss \rightarrow Hierarchy expected for R_{AA} of light and heavy-flavor hadrons!

$$R_{AA} = \frac{1}{N_{coll}} \times \frac{(dN/dy)_{AA}}{(dN/dy)_{pp}}$$


4

Charmonium measurements in ALICE Inner Tracking System tracking, vertex reconstruction Time Projection Chamber Silicon Pixel Detector tracking, particle identification primary and secondary vertices Separation of prompt and non-prompt J/ψ Other Pb–Pb ALICE talks: Quarkonium polarization in Pb–Pb and pp collisions with **V0** Detector ALICE centrality determination, Luca Micheletti Tuesday, 4:50 PM triggering, background rejection J/ψ photoproduction and the production of dileptons via photon-photon interactions in hadronic Pb-Pb collisions measured with ALICE Muon spectrometer Alexandra Neagu trigger and tracking for Thursday, 9.20 AM muons

- Central barrel (|y| < 0.9) J/ $\psi \rightarrow e^+e^-$
 - Possibility to separate prompt and non-prompt J/ ψ down to low p_{T}
- Muon Spectrometer (2.5 < y < 4) J/ψ , $\psi(2S) \rightarrow \mu^+\mu^-$
- Mid- and forward-y inclusive charmonium measurements down to zero p_{T}

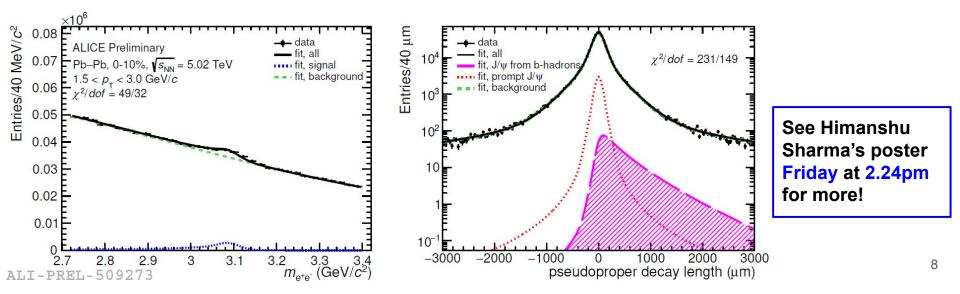
J/ψ

Inclusive J/ ψ R_{AA} results

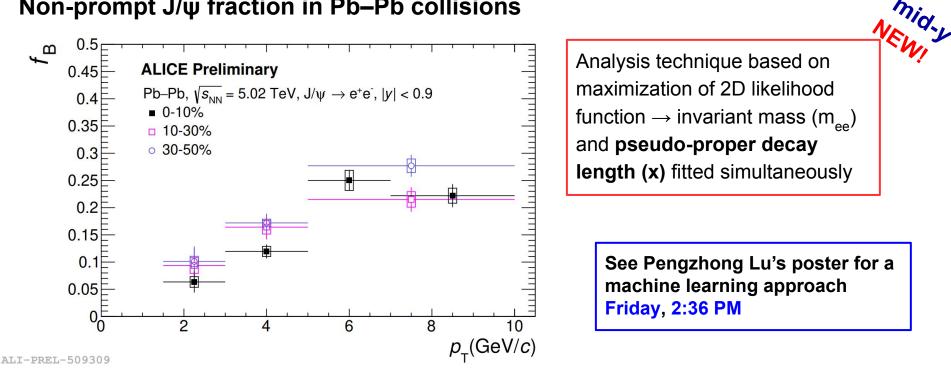
- Models implementing charmonium regeneration, either at the freeze-out (SHM) or during the fireball lifetime (transport models), in agreement with data
 - Both centrality and p_{T} dependencies are qualitatively well described
 - Rapidity dependence is also described by recombination models when we compare mid- and forward-y
- Conclusions on the J/ψ production phenomenology are hindered by the large model uncertainties

 TM2: Zhou et al., Phys. Rev. C 89, 054911 (21 May 2014)
 SHM: Andro

 Comover: Ferreiro E. et al., PLB 731 (2014) 57
 TM1/TAMU:

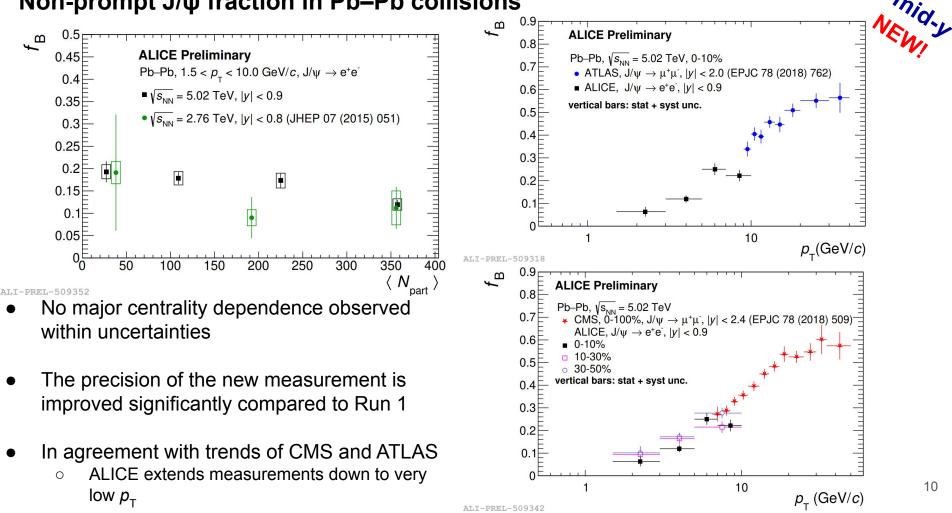

SHM: Andronic A. *et al.*, Phys. Lett. B797 (2019) 134836, TM1/TAMU: Du X. and Rapp R., Nucl.Phys.A 943 (2015) 147-158

Non-prompt J/ψ fraction in Pb–Pb collisions

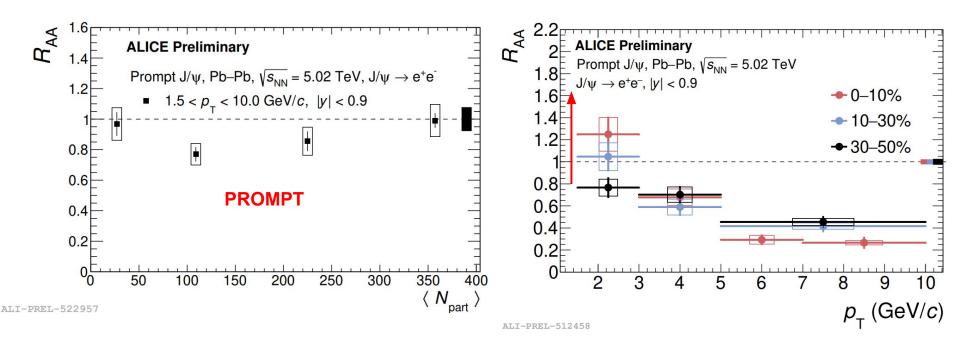

$$\ln L = \sum_{i=1}^{N} \ln F(x, m_{e^+e^-}) \qquad x = \frac{c (L_{xy}) m_{J/\psi}}{p_t^{J/\psi}} \qquad L_{xy} = \vec{L} \cdot \vec{p}_t^{J/\psi} / p_t^{J/\psi}$$

Analysis technique based on maximization of 2D likelihood function \rightarrow invariant mass (m_{ee}) and **pseudo-proper decay length (x)** fitted simultaneously

Mid-y

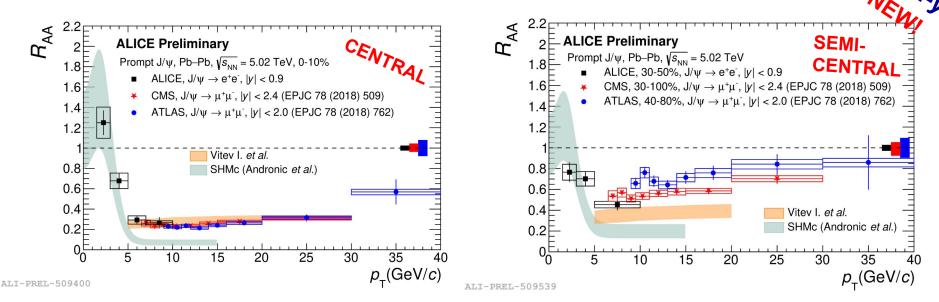


Non-prompt J/ ψ fraction in Pb–Pb collisions



- Non-prompt J/ ψ fraction measured down to p_{τ} = 1.5 GeV/*c* in different centralities:
 - Smaller non-prompt J/ ψ fraction towards low p_{τ} Ο

Non-prompt J/ ψ fraction in Pb–Pb collisions

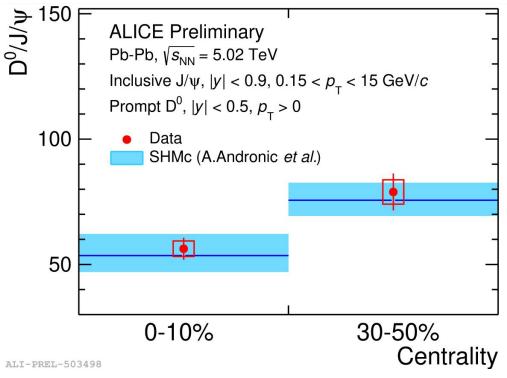

Prompt J/ ψ R_{AA} as a function of $\langle N_{part} \rangle$ and p_T

• Prompt J/ ψ R_{AA} increases towards more central collisions (effect more visible at low p_T) \rightarrow expected trend from J/ ψ regeneration

Mid-y

Prompt J/ ψ R_{AA} in central and semicentral Pb–Pb collisions

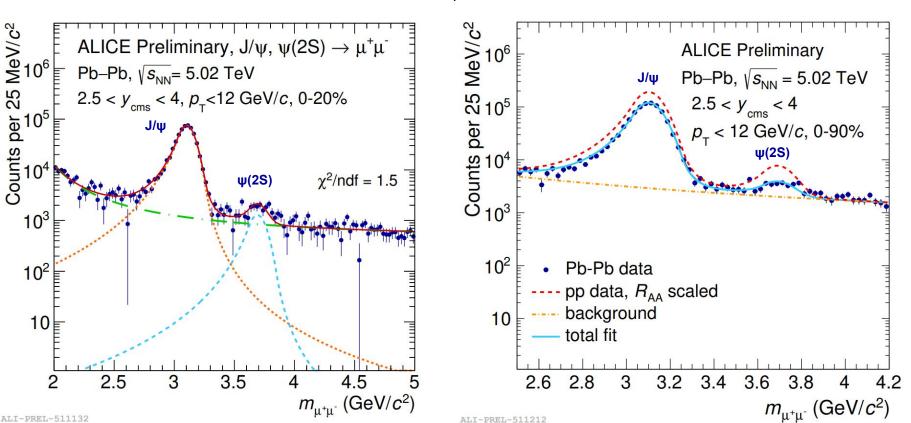
- Increasing R_{AA} at low p_{T} in central collisions compatible with a regeneration scenario
- Overlapping with ATLAS and CMS measurements in central collisions at high p_{T}
- Vitev: Dissociation of charmonia via microscopic description of interactions inside the medium
 - ALICE results compatible within uncertainties with the model for $p_{T} > 5 \text{ GeV/}c$
- Good agreement with calculations from SHM extended to the charm sector (SHMc) for $p_{T} < 5$ GeV/c


SHMc: A. Andronic et al., JHEP07 (2021) 035 (+ private communication) Vitev I. et al. arXiv:1709.02372, arXiv:1906.04186 Qualitatively compatible with transport models TM1 and TM2 at low $p_{\rm T}$ which include also non-prompt J/ ψ (not shown)

Models shown in the same centrality and rapidity ranges of ALICE measurements

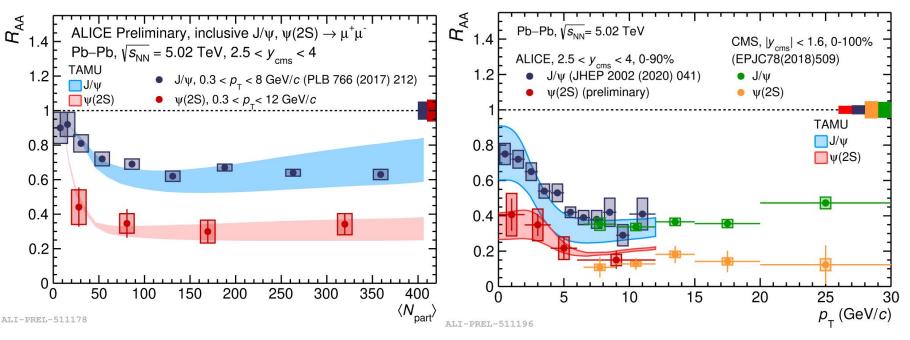
D^0 -to-J/ ψ ratio at midrapidity in Pb–Pb collisions

- Sensitive to hadronization mechanisms for open and hidden charm hadrons
 - $\circ \quad \mbox{For SHMc: most of the thermodynamic} \\ \mbox{parameters cancel out} \rightarrow \mbox{charm fugacity} \\ \mbox{only degree of freedom} \\ \end{tabular}$
- Common experimental (theoretical) uncertainties cancel out in data (model) respectively
- Reduction of the D⁰/J/ψ ratio with centrality could be explained by increase of charm fugacity towards most central collisions according to SHMc prediction
- Contribution from the non-prompt J/ψ ranges from 10 to 20% depending on centrality



$\psi(2S)$ and J/ ψ signal extraction

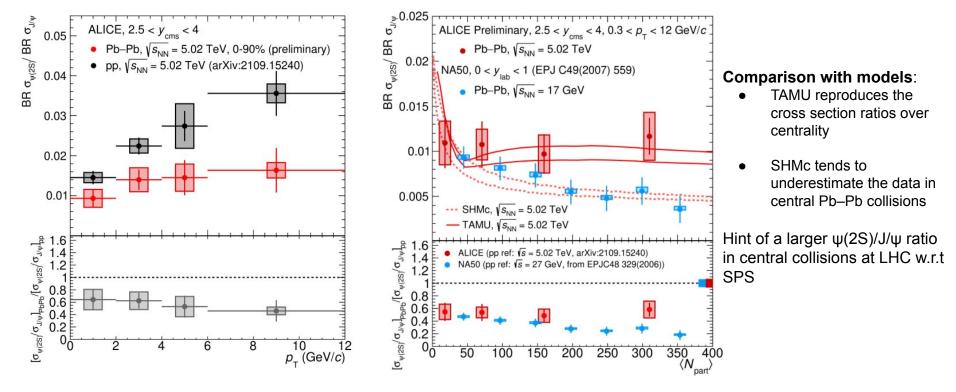
- New results based on full Run 2 statistics
 - $\circ \psi(2S)$ signal now significant in all centrality ranges, including most central!
 - Signal extraction performed down to $p_{T} = 0$



15

$\psi(2S)$ and $J/\psi R_{AA}$ as function of centrality and p_T

- Higher suppression observed for $\psi(2S)$ compared to J/ψ
- Increasing trend of R_{AA} towards low p_{T} for both J/ ψ and ψ (2S)
 - Hint of $\psi(2S)$ production via regeneration!
- Centrality and p_{T} dependence well reproduced by TAMU model for both J/ ψ and ψ (2S)
- Compatible with midrapidity CMS results available for higher p_{T}



VEW

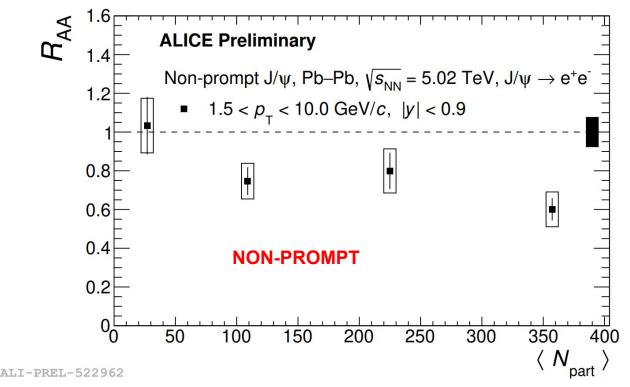
The $\psi(2S)$ / J/ ψ ratio

- Initial state effects, such as shadowing, largely cancel in this ratio \rightarrow smaller theoretical uncertainties
 - Theoretically the $\psi(2S)/J/\psi$ ratio is weakly dependent on the charm production cross section

LI-PREL-511153

•

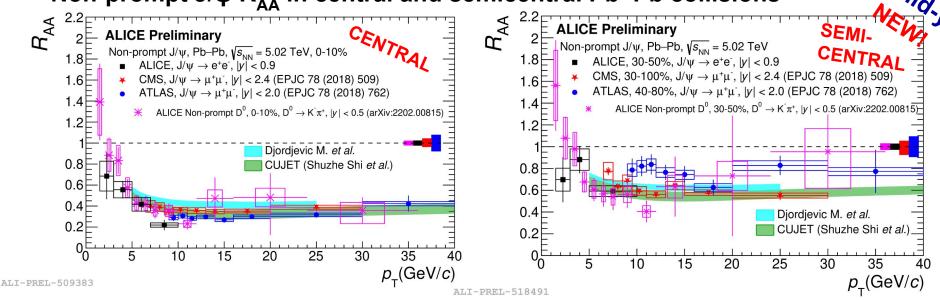
0


ALI-PREL-523330

- TAMU: Du X. and Rapp R., Nucl.Phys.A 943 (2015) 147-158 SHMc: Andronic A. et al., Nature 561, 321–330 (2018)
- 17

Smaller ψ(2S)/J/ψ ratio in Pb–Pb w.r.t. pp

Open beauty


Non-prompt J/ ψ R_{AA} as a function of $\langle N_{part} \rangle$

• Non-prompt J/ ψ R_{AA} more suppressed towards more central collisions \rightarrow expected trend from heavy quark energy loss

Non-prompt J/ ψ R_{AA} in central and semicentral Pb–Pb collisions

- Similar trends for non-prompt J/ ψ and non-prompt D⁰ R_{AA} (differences can arise due to the decay kinematic in two cases)
 - Strong suppression at high p_{T} (> 5 GeV/*c*)
 - Increase towards low p_{T} (< 5 GeV/c) \rightarrow hints that heavy quarks are pushed towards lower p_{T}
- Models containing collisional and radiative energy loss consistent with data ($p_{T} > 5 \text{ GeV}/c$)
- ALICE measurements complementary to ATLAS and CMS

Conclusions

Many NEW results!

- $\psi(2S)$ and prompt/inclusive J/ ψR_{AA} show similar trends \rightarrow regeneration at low p_{τ} , suppression at high p_{τ}
- Models implementing charmonium regeneration manage to describe data!
- $\psi(2S)/J/\psi$ described by TAMU model, slightly underestimated by SHMc

Open to hidden charm ratio

J/ψ and ψ(2S) R_{ΔΔ}

SHMc describes the D⁰ / J/ψ ratio well vs centrality

Open beauty R_{AA} via non-prompt J/ψ

- Increasing suppression towards central collisions
- ALICE measurements
 - Extend down to very low p_{T}
 - Compatible with models implementing energy loss mechanisms!

Thank you for listening!