Investigating strangeness enhancement in jets and

 medium in $\mathrm{p}-\mathrm{Pb}$ collisions at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with
ALICE

Ryan Hannigan and Justin Blair
The University of Texas At Austin
On behalf of the ALICE Collaboration

Motivation: Strangeness enhancement

- Measuring this enhancement in/out of jets can help determine its origins (thermal production in QGP medium/something else?)
- $\quad \Lambda$ and $\phi(1020)$ are excellent candidates to probe this enhancement:
- We see an increase in s-quark production as function of particle multiplicity across all collision systems
$\Lambda^{0}:$

Motivation: Baryon over meson ratio

- We see an increase in the ratio of baryons over mesons as a function of multiplicity across all collision systems
- The baryon over meson ratio is used to study fragmentation, recombination
- We can investigate the \wedge over $\phi(1020)$ ratio in different kinematic regions with respect to multiplicity to gain insight into the origins of this enhancement

Analysis: Two-particle correlations

- Used to separate events into 3 kinematic regions:
- near side
- away side
- underlying event
- Can investigate $\mathrm{h}-\Lambda / \mathrm{h}-\mathrm{h}$ and $\mathrm{h}-\phi(1020) / \mathrm{h}-\mathrm{h}$ with respect to multiplicity in each kinematic region

Results: $h-\phi(1020) / h-h$ ratio

- The inclusive ratio lines up with previously published $\phi(1020) / \pi$ ratios
- The near-side ratio appears much flatter than the away-side ratio with respect to multiplicity
- Strangeness production appears to be modified by medium interaction (away-side)

Next steps: ^ reconstruction

Two techniques for reconstructing lambdas:

Resonance technique

- Combine all $p-\pi$ pairs in the event
- Large combinatorial background
- Maximal statistics
- Invariant mass schematic shown to right

V0 technique

- Use VO finder: unlike sign $p-\pi$ tracks that have small DCA
- Very small background
- ~40\% less statistics when compared with resonance technique
- Invariant mass schematic shown to right

- In this analysis we will be using both techniques in parallel (to be used for comparison)
- Once we have the final $h-\Lambda / h-h$ ratio results, we can combine these results with the ϕ to extract the Λ / ϕ ratio with respect to multiplicity!

