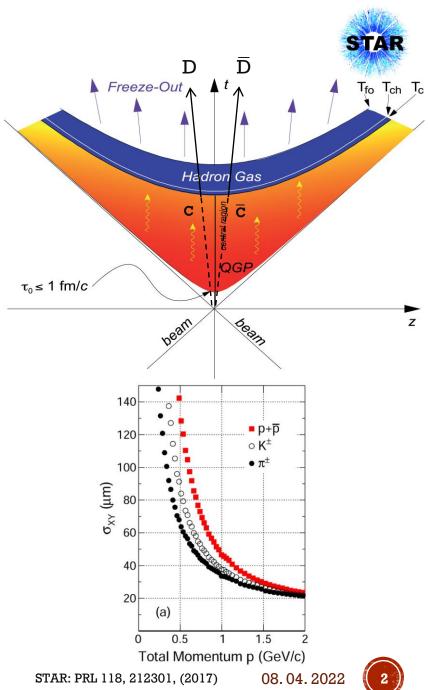


Measurements of open-charm hadron production and total charm cross section in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV by the STAR experiment

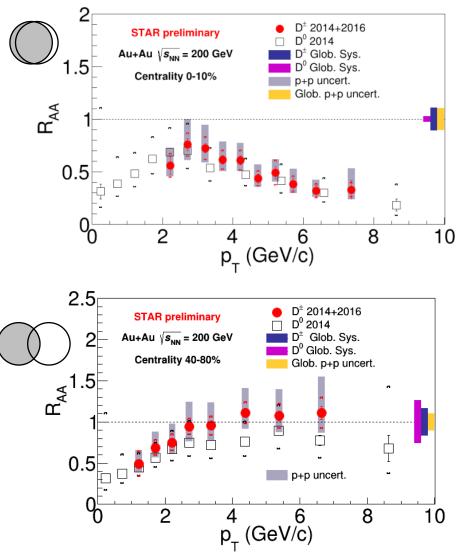
Jan Vanek, for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences

Czech technical University in Prague

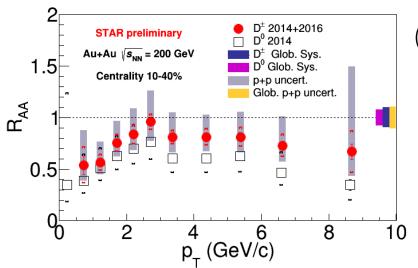

Quark Matter 2022, Poland, Krakow

08.04.2022



PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) is the state of matter where quarks and gluons are no longer trapped inside colorless hadrons
- QGP can be studied using relativistic heavy-ion collisions
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium
- Charm quark production accessed at STAR via topological reconstruction of hadronic decays of open-charm hadrons
 - Thanks to good pointing resolution of the Heavy Flavor Tracker detector



D^0 AND D^\pm NUCLEAR MODIFICATION FACTOR

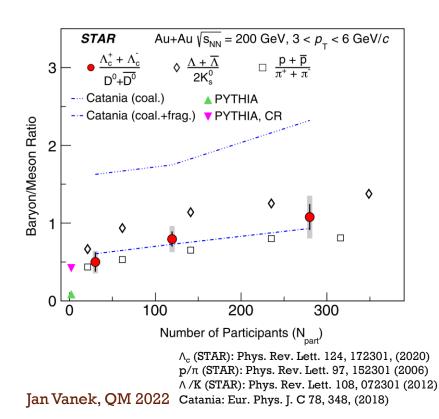
p+p reference (STAR): Phys. Rev. D 86, 072013, (2012) D^0 (STAR): Phys. Rev. C 99, 034908, (2019).

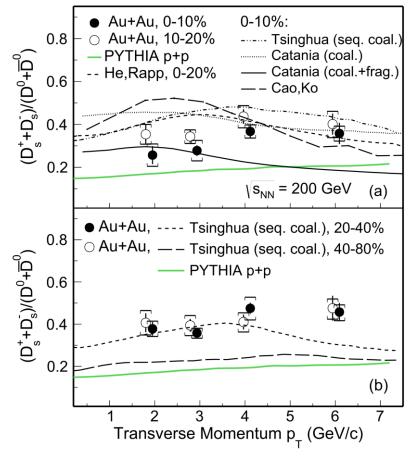
Jan Vanek, QM 2022

Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$$

- Systematic uncertainty of p+p reference plotted separately for D[±] (grey band), for D⁰ included in brackets
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
- Similar level of suppression and centrality dependence for D[±] and D⁰
- Strong interactions between charm quarks and the medium


08.04.2022


STAR

• Λ_c/D^0 and D_s/D^0 yield ratios enhanced in

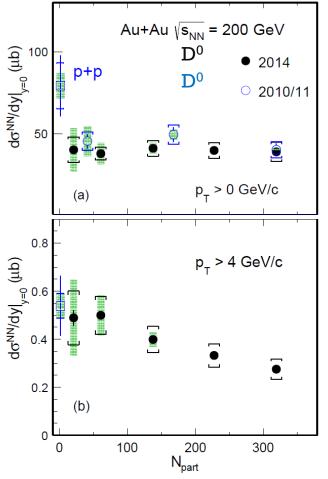
 Λ_{r}/D^{0} AND D, D^{0} YIELD RATIO ENHANCEMENT

- Λ_c/D^o and D_s/D^o yield ratios enhanced in Au+Au collisions with respect to PYTHA calculations
- Enhancement consistent with coalescence hadronization of charm quarks in QGP

D_s (STAR): Phys. Rev. Lett. 127, 092301 (2021). Catania: Eur. Phys. J. C 78, 348, (2018). Tsinghua: arXiv1805.10858, (2018). He, Rapp, Phys. Rev. Lett. 124, 042301 (2020) Cao, Ko *et al.*: Phys. Lett. B 807, 135561 (2020).

08.04.2022

TOTAL CHARM PRODUCTION CROSS SECTION


- Total charm production cross section per binary collision in Au+Au extracted from the measurements of open-charm hadrons
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open charm hadron species in Au+Au collisions compared to p+p collisions

Coll. system	Hadron	${ m d}\sigma_{ m NN}/{ m d}y$ [µb]
Au+Au at 200 GeV Centrality: 10-40% 0 < p _T < 8 GeV/c	\mathbf{D}^0	$39 \pm 1 \pm 1$
	D^{\pm}	$18 \pm 1 \pm 3$
	D _s	$15 \pm 2 \pm 4$
	\wedge_{c}	$40 \pm 6 \pm 27*$
	Total:	$112 \pm 6 \pm 27$
p+p at 200 GeV	Total:	$130 \pm 30 \pm 26$

*The Λ_c cross section is derived using the Λ_c/D^0 yield ratio D^\pm cross section calculated using preliminary invariant yields Remaining cross sections calculated using published results

Jan Vanek, QM 2022

Acknowledgement: This research is funded by the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic

 $\begin{array}{l} D^0\ 2014\ ({\rm STAR}):\ Phys.\ Rev.\ C\ 99,\ 034908,\ (2019).\\ D^0\ 2010/11\ ({\rm STAR}):\ Phys.\ Rev.\ Lett.\ 113,\ 142301\ (2014),\\ erratum:\ Phys.\ Rev.\ Lett.\ 121,\ 229901\ (2018).\\ p+p\ ({\rm STAR}):\ Phys.\ Rev.\ D\ 86\ 072013,\ (2012).\\ D_s\ ({\rm STAR}):\ Phys.\ Rev.\ Lett.\ 127,\ 092301\ (2021).\\ \wedge_c\ ({\rm STAR}):\ Phys.\ Rev.\ Lett.\ 124,\ 172301,\ (2020).\\ \end{array}$

08.04.2022