Identified Hadron Spectra and Baryon Stopping in \(\gamma + \text{Au} \) Collisions at STAR

Nicole Lewis, for the STAR Collaboration

Isolating \(\gamma A \) collisions by using the ZDC and requiring rapidity gaps.
Motivations

Baryon Stopping

Energy needed to produce particles in heavy-ion collisions comes from kinetic energy lost by baryons in the colliding nuclei

- Larger effect in collisions with higher multiplicity (smaller impact parameter)
- Net-baryon yield can be estimated from the net-proton yield: difference in number of protons and antiprotons
- Cannot be fully explained by pure string fragmentations

See Ben Kimelman's Talk: QCD matter at finite temperature and density | Tuesday 6:10 pm

Baryon Junction

Nonperturbative configuration of gluons linked to all three valence quarks

- Carries baryon number
- Theorized to be an effective mechanism of stopping baryons in pp and AA

Nicole Lewis, QM 2022

Photonuclear Events

Can be used to study baryon stopping with the cleanest possible process

- $q\bar{q}$ + Baryon Junction producing a midrapidity proton
- $q\bar{q}$ pair would not be able to stop baryons if the baryon number was carried by all three valence quarks

STAR Preliminary
Central AA collisions
• $dN/dy_{lab}/(N_{part})$

Fit: $1.1 \exp(-0.61\delta y)$
Defining γA and Peripheral AA Event Classes

Most photonuclear events have low multiplicity, concentrated at equivalent $Au + Au$ centrality of roughly 80%.

Using peripheral events as a baseline comparison, multiplicity consistent with $60 - 80\% Au + Au$.
\[p_T \] Dependence of Particle Ratios in \(\gamma A/AA \)

Double ratio
\[K/\pi < 1 \text{ and flat with } p_T \]
→ less access to strangeness in \(\gamma A \) events
\[\bar{p}/\pi \text{ and } p/\pi \text{ steeper than } K/\pi \]
→ larger radial flow in 60 – 80% Au + Au
\[\bar{p}/\pi^- < p/\pi^+ \text{ for } p_T \approx 1 \text{ GeV/c} \]
→ soft baryon stopping

Not corrected for efficiency, but largely canceled in the ratio
Double ratio: $\bar{p}/p < 1$ at lower p_T

- Soft baryon stopping that is stronger in γA compared to peripheral AA
- Ratio is smaller at higher rapidity (A-going side)