

Event shape and multiplicity dependence of $K^*(892)^{\pm}$ at midrapidity in pp collisions at $\sqrt{s} = 13$ TeV with **ALICE** at the LHC

Antonina Rosano⁽¹⁾ and Suman Deb⁽²⁾ on behalf of the ALICE collaboration

- 1. Università di Messina and INFN sezione di Catania, Italy
- 2. Indian Institute of Technology Indore, India
- Resonances are the perfect probes to characterize the system formed in heavy-ion collisions at ultrarelativistic energies.
- K*[±] resonance is particularly interesting because of its very short lifetime (~ 4 fm/c), comparable to the one of the hadronic phase → it may be sensitive to the competing rescattering and regeneration mechanisms.
- An event shape observable like transverse spherocity (S_0) is sensitive to hard $(S_0 = 0)$ and soft processes $(S_0 = 1)$. Such an observable can be used as a tool to disentangle pp collisions into isotropic (dominated by soft QCD) and jetty (dominated by hard QCD) events.
- Although pp collisions are used as a baseline for heavy-ion collisions, recent preliminary results for $K^{*\pm}$ production as a function of multiplicity and spherocity in pp collisions at $\sqrt{s}=13$ TeV show the onset of phenomena typical of heavy-ion collisions, like collective behaviour and suppression of the yield ratios of resonances to stable particles.

K^{*±} resonance reconstruction

ITS – Tracker / Trigger / Vertexer TPC - Tracker / PID (dE/dx) **V0** – Trigger / Multiplicity estimator

Used sub-detectors:

- Signal reconstructed via **invariant mass distribution** of the decay daughters: $K^{*\pm} \rightarrow \pi^{\pm} + K^{0}_{s}$; K^{0}_{s} identified via $K^{0}_{s} \rightarrow \pi^{+} + \pi^{-}$, and π^{\pm} via dE/dx in the TPC
- Uncorrelated background estimated via event mixing technique
- ❖ After the uncorrelated background subtraction, the remaining distribution is fitted with a NR Breit-Wigner + residual backgroud (expol) function F_{BG} :

mmm

$$\frac{A}{2\pi} \frac{\Gamma_0}{(M_{K\pi} - M_0)^2 + \frac{\Gamma_0^2}{4}} + F_{BG}$$

$$F_{BG}(M_{K\pi}) = [M_{K\pi} - (m_{\pi} + m_{K})]^{n} exp(A + BM_{K\pi} + CM_{K\pi}^{2})$$

$K^{*\pm} p_T$ spectra, $\langle p_T \rangle$, and dN/dy

ALI-PREL-503116

- p_T spectra **get harder** with increasing multiplicity \rightarrow **flow-like** effect
- **Lower panel:** ratios of $p_{\rm T}$ spectra to INEL>0. For $p_{\rm T}$ < 5 GeV/c spectra increase from low to high multiplicity classes. Same spectral shape for $p_{\rm T}$ > 5 GeV/c \rightarrow Process dominant at low $p_{\rm T}$

Comparable results for $K^{*\pm}$ and K^{*0} with **lower** systematic uncertainties for $K^{*\pm}$ measurements

Ratio of particle yields: $K^{*\pm}/K_s^0$

The $K^{*\pm}/K_S^0$ trend in pp collisions at $\sqrt{s}=13$ TeV confirmes the K^{*0}/K_S^0 suppression even within the systematic uncertainties \rightarrow rescattering effects in small systems?

- Upper panel: p_T dependence of the particle ratios $K^{*\pm}/K_S^0$ for low (X) and high (II) multiplicity classes.
- Lower panel (double ratios): high multiplicity values divided by the low multiplicity ones.
- For p_T < 2.5 GeV/c, the suppression of the K* $^{\pm}$ /K $_S^0$ ratio from low to high multiplicity is clearly noticeable

 K^{*0} ($K^{*0} \rightarrow K^{\mp} + \pi^{\pm}$) results have been confirmed and even improved by $K^{*\pm}$ measurements thanks to the **higher precision** reached. In the inclusive analysis of $K^{*\pm}$ production in pp collisions (<u>Phys.Lett.B 828 (2022) 137013</u>) this has been attributed to the different strategies used for K_S^0 and K^{\pm} identification in ALICE

Transverse spherocity results for high multiplicity events

- **Upper panel**: p_T spectra considering 20% (A) and 10% (B) spherocity classes; **Lower Panel**: Ratio with integrated events.
- **Observation**: Clear dominance of isotropic events for both **(A)** and **(B)**. This dominance seems to decrease with increasing p_T within systematic uncertainties and jetty events take over at high p_T

Particle ratios

- **Upper panel**: K** ratio to **(C)** kaon and **(D)** proton with spherocity class; **Lower panel**: Ratio of event shape with integrated event.
- Observation: No significant dependence on the event shape classes except the first three p_T bins for both (C) and (D).

Summary and Conclusions

- First measurements of K** production at |y| < 0.5 in pp collisions at \sqrt{s} =13 TeV at different S_0 and VOM classes have been reported here.
- Preliminary results show the typical onset of **collective-like phenomena** (hardening of the p_T spectra and suppression of $K^{*\pm}/K_S^0$) \rightarrow possible **hadronic phase** in **small systems** too?