Event shape and multiplicity dependence of $K^{*}(892)^\pm$ at midrapidity in pp collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Antonina Rosano(1) and Suman Deb(2) on behalf of the ALICE collaboration

1. Università di Messina and INFN sezione di Catania, Italy
2. Indian Institute of Technology Indore, India

- Resonances are the perfect probes to characterize the system formed in heavy-ion collisions at ultrarelativistic energies.

- $K^{*\pm}$ resonance is particularly interesting because of its very short lifetime (~ 4 fm/c), comparable to the one of the hadronic phase → it may be sensitive to the competing rescattering and regeneration mechanisms.

- An event shape observable like transverse spherocity (S_0) is sensitive to hard ($S_0 = 0$) and soft processes ($S_0 = 1$). Such an observable can be used as a tool to disentangle pp collisions into isotropic (dominated by soft QCD) and jetty (dominated by hard QCD) events.

- Although pp collisions are used as a baseline for heavy-ion collisions, recent preliminary results for $K^{*\pm}$ production as a function of multiplicity and spherocity in pp collisions at $\sqrt{s} = 13$ TeV show the onset of phenomena typical of heavy-ion collisions, like collective behaviour and suppression of the yield ratios of resonances to stable particles.
K^{*±} resonance reconstruction

- Signal reconstructed via **invariant mass distribution** of the decay daughters: \(K^{*±} \rightarrow π^± + K^0_S \); \(K^0_S \) identified via \(K^0_S \rightarrow π^+ + π^- \), and \(π^± \) via \(dE/dx \) in the TPC.
- **Uncorrelated background** estimated via event mixing technique.
- After the uncorrelated background subtraction, the remaining distribution is fitted with a **NR Breit-Wigner + residual background** (expol) function \(F_{BG} \):

\[
F_{BC}(M_{Kπ}) = \frac{A}{2π(M_{Kπ} - M_0)^2 + \Gamma_0^2} + F_{BG}
\]

\[
F_{BC}(M_{Kπ}) = [M_{Kπ} - (m_π + m_K)]^n \exp(A + BM_{Kπ} + CM_{Kπ}^2)
\]
$K^\pm p_T$ spectra, $\langle p_T \rangle$, and dN/dy

- p_T spectra get harder with increasing multiplicity → flow-like effect
- Lower panel: ratios of p_T spectra to INEL>0. For $p_T < 5$ GeV/c spectra increase from low to high multiplicity classes. Same spectral shape for $p_T > 5$ GeV/c → Process dominant at low p_T

Comparable results for K^{\pm} and K^0 with lower systematic uncertainties for K^{\pm} measurements
The \(K^{*0} / K_S^0 \) trend in pp collisions at \(\sqrt{s} = 13 \text{ TeV} \) confirms the \(K^{*0} / K_S^0 \) suppression even within the systematic uncertainties \(\rightarrow \) rescattering effects in small systems?

\(K^{*0} (K^{*0} \rightarrow K^+ \pi^\pm) \) results have been confirmed and even improved by \(K^{*\pm} \) measurements thanks to the higher precision reached. In the inclusive analysis of \(K^{*\pm} \) production in pp collisions (\textit{Phys.Lett.B 828 (2022) 137013}) this has been attributed to the different strategies used for \(K_S^0 \) and \(K^\pm \) identification in ALICE.
Transverse spherocity results for high multiplicity events

p_T spectra

Upper panel : p_T spectra considering 20% (A) and 10% (B) spherocity classes; **Lower panel :** Ratio with integrated events.

Observation: Clear dominance of isotropic events for both (A) and (B). This dominance seems to decrease with increasing p_T within systematic uncertainties and jetty events take over at high p_T.

\[
\begin{align*}
\text{(A)} & \quad \text{ALICE Preliminary} \\
\text{pp, } \sqrt{s} = 13 \text{ TeV} \\
(1-3) \text{ VOM Mult. class} \\
(K^+ + K^-)/2, |y| < 0.5 \\
\text{Ratio to } S_{0,1}^{\text{int.}} \\
\end{align*}
\]

\[
\begin{align*}
\text{(B)} & \quad \text{ALICE Preliminary} \\
\text{pp, } \sqrt{s} = 13 \text{ TeV} \\
(1-3) \text{ VOM Mult. class} \\
(K^+ + K^-)/2, |y| < 0.5 \\
\text{Ratio to } S_{0,1}^{\text{int.}} \\
\end{align*}
\]

Particle ratios

Upper panel : $K^*\pm$ ratio to (C) kaon and (D) proton with spherocity class; **Lower panel :** Ratio of event shape with integrated event.

Observation: No significant dependence on the event shape classes except the first three p_T bins for both (C) and (D).

Summary and Conclusions

- First measurements of $K^{*}\pm$ production at $|y| < 0.5$ in pp collisions at $\sqrt{s} = 13$ TeV at different S_0 and VOM classes have been reported here.
- Preliminary results show the typical onset of collective-like phenomena (hardening of the p_T spectra and suppression of $K^{*\pm}/K_S^0$) → possible hadronic phase in small systems too?