Search for higher mass resonances via KK decay channel in pp collisions with ALICE at the LHC

on Normal meson

Dukhishyam Mallick (for the ALICE Collaboration)National Institute of Science Education and Research,
HBNI, Jatni, INDIA

Pentaquark Tetraqua

Hybrid meson

Motivation

Lattice QCD predicts the possible existence of glueballs [1],[2].

[1] S. Chekanov et al. (ZEUS Collaboration), PRL101, 112003 (2008)[2].P.A. Zyla et al. (Particle Data Group)

Candidates

Mass range : 1550-1750 MeV/ c^2 Total angular momentum, charge and parity : J^{PC} (0++)

 $f_0(1710)$ is the lightest scalar glueball candidate

can we see these states in pp collisions with the ALICE detector ??

In the present study we look for resonances decaying in ${\rm K^0}_{\rm S}{\rm -}{\rm K^0}_{\rm S}$ and ${\rm K^+K^-}$ pairs via invariant mass reconstruction in pp collisions at LHC energies

K⁰ selection and reconstruction of resonances

Data set

Collision system: pp

Center-of-mass energy :13 TeV Events analyzed : 1.52 x 10⁹

Invariant mass method

$$M_R = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

 $M_R\Gamma_0M_0$

 $(M_R^2 - M_0^2)^2 + M_0^2 \Gamma_0^2$

[1] S. Chekanov et al. (ZEUS Collaboration),PRL101, 112003 (2008)[2].P.A. Zyla et al. (Particle Data Group)

Relativistic Breit-Wigner function (rBW) (for signal):

For residual background function $A(M_R-2m_0)^B\exp(-C(M_R-2m_0))$ (Res.Bkg):

Fit funtion used for this study [1]

$$\begin{split} \text{For K0_s-$K0_s pair : Coherent Breit-Wigner function + Res.Bkg : } c1* & | 5*rBW\{f_2(1270) - 3*rBW\{a_2(1320)\} + 2*rBW\{f_2(1525)\} |^2 \\ & + c3* & | rBW\{f_0(1710)\} |^2, \end{split}$$

 M_R = mass of reconstructed pair, M_0 = PDG mass of resonance [2], m_0 = PDG mass of decay daughter of resonance,

 Γ_0 = PDG width of resonance [2], c1, c3, A, B, C are free fit Parameters

For K⁺K⁻ pair : Non-coherent Breit-Wigner function + Res.Bkg

K⁰_e-K⁰_e and K⁺K⁻ invariant mass distributions

Combinatorial background: Unlike-sign pairs, Like-sign pairs

Signal after combinatorial background subtraction

- $^{\circ}_{S}$ $^{\circ}_{K^{0}}_{S}$ channel: 3 invariant mass peaks are seen -> consistent with the observation in ep collisions at HERA[1].
- [◀] K⁺-K⁻ channel: 2 invariant mass peaks are visible.
- \triangleleft A prominent $f_{2}(1525)$ signal is observed in both decay channels.

Summary and outlook

Summary:

- ☑ First look to the invariant mass distributions of K⁰_S-K⁰_S and K⁺K⁻ pairs in pp collisions at 13 TeV.
- If $f_{2}(1525)$ in both of decay channels.

Outlook:

- \blacksquare Extract mass, width and $p_{\scriptscriptstyle T}$ distributions of the observed high mass resonances.
- High statistics collected in Run 3 and Run 4 is mandatory for precise measurements (examples: multiplicity dependence p_T spectra, nuclear modification factor and anisotropic flow).