

Constraining the anti-deuteron nuclear inelastic cross-section with ALICE

- I. Vorobyev¹, L. Fabbietti¹, M. Puccio²
 - 1) Technische Universität München 2) CERN

Geant4 technical forum 23.03.2020

Introduction

Anti-deuteron inelastic cross-section is poorly known at low energies

- Only two measurements available, for $p_{\bar{d}}$ = 13.3. and 25 GeV/c [1, 2]
- Important input for various physics,
 e.g. indirect Dark Matter searches
- Deuteron inelastic c.s. has been measured at low momentum [3]

At the LHC, matter and anti-matter are produced in equal (and large) amounts

- Use pp/p-Pb/Pb-Pb collisions as a source of (anti-)deuterons and ALICE detector material as a target
- ALICE can reconstruct (anti-)deuterons in 0.5 momentum range
- [1] Nuclear Physics B 31(2), 253 (1971)
- [2] Phys. Let. B 31(4), 230 (1970)
- [3] Phys. Rev. C 53(6):2919 (1996)

Idea of the current analysis*

Analyse <u>raw reconstructed</u> anti-deuteron to deuteron ratios

- No correction due to detector efficiency or absorption in detector material
- Raw reconstructed d/d ratio is sensitive to $\sigma_{inel}(d)$
- Benchmark with (anti-)protons since their crosssections are known much better

Compare the obtained d/d ratio to detailed MC simulations

- Geant4 for the propagation of (anti-)particles through the detector material
- By how much one should adjust the σ_{inel}(d) in Geant4 in order to describe experimental d/d ratio?

^{*} Other ideas are also being explored, e.g. reconstruct the annihilation directly, compare d yields in TPC and in TOF, extend the analysis to anti-3He, ...

Technische Universität München

ALICE material budget at mid-rapidity

Material at mid-rapidity for straight perpendicular tracks

— Averaged over φ— Centre of TPC sector

Raw primary spectra

Results from p-Pb collisions at 5.02 TeV, ~600 M events

- (Anti-)particles are reconstructed either with ITS+TPC or with ITS+TPC+TOF
- Drop in raw spectra for TOF analysis: efficiency + loss in additional detector material

Use these spectra to construct \overline{p}/p and \overline{d}/d ratios and compare the results with MC

- Reconstruction efficiencies cancel in ratio
- (Anti-)protons as a benchmark, since their inelastic c.s. are known much better

Technische Universität München

p/p ratio compared to MC simulations

Raw p/p ratio compared to ALICE Monte Carlo simulations

 Higher loss of anti-protons in detector material as expected

Monte Carlo data: detailed simulation of ALICE detector performance

- Same reconstruction algorithms as for experimental data
- Propagation of (anti-)protons and interaction with matter with Geant4
- Geant4 version used: 10.4.2,
 FTFP_INCLXX_EMV physics list

Geant4 in good agreement with experimental data in whole investigated momentum range

d/d ratio compared to MC simulations

Raw d/d ratio compared to ALICE Monte Carlo simulations

 Higher loss of anti-deuterons in detector material as expected

Monte Carlo data: detailed simulation of ALICE detector performance

- Same reconstruction algorithms as for experimental data
- Propagation of (anti-)deuterons and interaction with matter with Geant4
- Geant4 version used: 10.4.2,
 FTFP_INCLXX_EMV physics list

Good description of experimental results with Geant4-based simulations

 Vary σ_{inel} (d) in Geant4-based simulations until MC ratio is ±1σ or ±2σ away from experimental ratio → constraints on σ_{inel}(d)

Geant4 inelastic c.s. for anti-nuclei

Parameterisations are based on Glauber calculation as described in [1]

- Direct Glauber calculations in GEANT4 in a run-time mode are too heavy
 - → parametrise Glauber calculations with [2, 3] :

$$\sigma_{hA}^{tot} = 2\pi R_A^2 \ln \left[1 + \frac{A\sigma_{hN}^{tot}}{2\pi R_A^2} \right]$$

$$\sigma_{hA}^{in} = \pi R_A^2 \ln \left[1 + \frac{A\sigma_{hN}^{tot}}{\pi R_A^2} \right],$$

$$\sigma_{BA}^{tot} = 2\pi \left(R_B^2 + R_A^2 \right) \ln \left[1 + \frac{BA\sigma_{NN}^{tot}}{2\pi (R_B^2 + R_A^2)} \right]$$

$$\sigma_{BA}^{in} = \pi \left(R_B^2 + R_A^2 \right) \ln \left[1 + \frac{BA\sigma_{hN}^{tot}}{\pi (R_B^2 + R_A^2)} \right],$$

Implemented in G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection()

- [1] Phys. Lett. B705, 235 (2011)
- [2] Eur. Phys. J. C 62 (2009) 399
- [3] Nucl. Instrum. Methods B 267 (2009) 2460

Technische Universität Müncher

Variations of σ_{inel} in MC simulations

Vary the σ_{inel} in Geant4 to see the effect on raw ratios

• Almost linear dependence between σ_{inel} and raw ratio has been found

Vary σ_{inel} until MC ratio is $\pm 1\sigma/\pm 2\sigma$ away from experimental data 1σ : all uncertainties on ratio added in quadrature

- Stat. and syst. uncertainties of experimental data
- Primordial anti-matter/matter ratio produced at the primary collision vertex
 - $\overline{p}/p = 0.984 \pm 0.015$, $d/d = 0.968 \pm 0.030$
- Variations of $\sigma_{inel}(p)$ and $\sigma_{inel}(d)$ within the precision of Geant4 description (in back-up)
- Variations of all elastic cross-sections by ±20%

Constraints for $\sigma_{inel}(\overline{p})$ with ALICE material

 $\sigma_{\text{inel}}(\overline{p})$ has been estimated for an "averaged element" of ALICE detector material

- Good agreement with Geant4 parameterisations as expected
- Several measurements available for $\sigma_{\text{inel}}(\overline{p})$ on different materials, good description with Geant4 parameterisations

Constraints for $\sigma_{inel}(d)$ with ALICE material

 $\sigma_{\text{inel}}(d)$ has been estimated for an "averaged element" of ALICE detector material

• Good agreement with Geant4 parameterisations for ITS+TPC+TOF analysis $(0.9 < p_d < 4.0 \text{ GeV/c})$

Constraints for $\sigma_{inel}(d)$ with ALICE material

 $\sigma_{\text{inel}}(d)$ has been estimated for an "averaged element" of ALICE detector material

- Good agreement with Geant4 parameterisations for ITS+TPC+TOF analysis $(0.9 < p_d < 4.0 \text{ GeV/c})$
- Hint for steeper rise of $\sigma_{inel}(d)$ at low momentum!

Conclusions and remarks

ALICE experiment at CERN LHC as a tool to study anti-deuteron inelastic c.s. Analysis of raw reconstructed \overline{p}/p and \overline{d}/d ratios

- Good description of results with Geant4-based simulations
- Constrain $\sigma_{inel}(\overline{p})$ and $\sigma_{inel}(\overline{d})$ via comparison with Geant4-based Monte Carlo
 - Results for $\sigma_{inel}(\overline{p})$ in good agreement with existing data
- Constraints on $\sigma_{inel}(\bar{d})$ point at steeper rise at low momentum Work in progress towards the final results
- Paper in preparation (currently under internal ALICE review)

Another request from ALICE: proper treatment of hypertriton in the propagation

- Currently treated as a normal nucleus, but from its structure is more like a halo-nucleus (→ enhanced energy loss)
- If available, similar study as presented today will be possible for hypertriton in the future

Back-up slides

GEANT3/4 cross-sections for (anti-)deuterons

GEANT3 inelastic cross-sections

• Empirical parametrization based on Moiseev's formula:

$$\sigma_{pA} = 45A_{T}^{0.7} (1 + 0.016 \sin(5.3 - 2.63 \ln A_{T})) (1 - 0.62e^{-5E} \sin(1.58E^{-0.28}))$$

$$\sigma_{pA} = 45A_{T}^{0.7} (1 + 0.016 \sin(5.3 - 2.63 \ln A_{T})) (1 - 0.62e^{-5E} \sin(1.58E^{-0.28}))$$

$$\sigma_{nA} = 43.2A_{T}^{0.719}$$

$$\sigma_{pA} = (a_{0} + a_{1}Z_{T} + a_{2}Z_{T}^{2})A_{T}^{2/3}$$

$$K(A_{T}) = C_{0} \log(A_{T} + 2)^{-C_{1}}$$
where $a_{0} = 48.2 + 19(E - 0.02)^{-0.55}$, $a_{1} = 0.1 - 0.18E^{-1.2}$ and $a_{2} = 0.0012E^{-1.5}$

$$\sigma_{\bar{n}A} = (51 + 16E^{-0.4})A_{T}^{2/3}$$

Geant4: total antip-p cross-section

Total antip-p cross-section parametrised as [1-3]:

$$\sigma_{\bar{p}p}^{tot} = \sigma_{asm\,pt}^{tot} \left[1 + \frac{C}{\sqrt{s - 4m_N^2}} \frac{1}{R_0^3} \left(1 + \frac{d_1}{s^{0.5}} + \frac{d_2}{s^1} + \frac{d_3}{s^{1.5}} \right) \right]$$

$$\sigma_{asm\,pt}^{tot} = 36.04 + 0.304 \ \left(log(s/33.0625) \right)^2$$

, where m_N is the nucleon mass (GeV), $s = E_{cm^2}$ (GeV²), and

$$R_0^2 = 0.40874044\sigma_{asymp}^{tot} - B(s) \text{ GeV}^{-2}$$
 $b_0 = 11.92 \pm 0.15 \text{ GeV}^{-2},$ $B(s) = b_0 + b_1 \left[\ln(\sqrt{s}/20.74)\right]^2 \text{ GeV}^{-2}$ $b_2 = 0.3036 \pm 0.0185 \text{ GeV}^{-2}$

Parameters C, d₁, d₂ and d₃ are determined from fit to exp. data [PDG]

$$C = 13.55 \pm 0.09 \,\mathrm{GeV}^{-2}$$

$$d_1 = -4.47 \pm 0.02 \text{ GeV},$$

$$d_2 = 12.38 \pm 0.05 \text{ GeV}^2$$

$$d_3 = -12.43 \pm 0.05 \text{ GeV}^3$$
.

- 1. J.R. Cudell, et al., COMPLETE Collaboration, Phys. Rev. D 65 (2002) 074024
- M. Ishida, K. Igi, Phys. Rev. D 79 (2009) 096003.
- 3. A.A. Arkhipov, hep-ph/9909531, hep-ph/9911533, 1999

Geant4: elastic antip-p cross-section

Parametrisation for elastic antip-p cross-section [1-3]:

$$\sigma_{\bar{p}p}^{el} = \sigma_{asmpt}^{el} \left[1 + \frac{C}{\sqrt{s - 4m_N^2}} \frac{1}{R_0^3} \left(1 + \frac{d_1}{s^{0.5}} + \frac{d_2}{s^1} + \frac{d_3}{s^{1.5}} \right) \right]$$

Same formula, but with different parameters σ_{asymp} and C, d₁, d₂, d₃

$$\sigma_{asmpt}^{el} = 4.5 + 0.101 \left(log(s/33.0625) \right)^2$$

$$C = 59.3 \pm 2.0 \,\mathrm{GeV}^{-2}$$

$$d_1 = -6.95 \pm 0.09$$
 GeV,

$$d_2 = 23.54 \pm 0.29 \text{ GeV}^2$$

$$d_3 = -25.34 \pm 0.36 \,\text{GeV}^3$$
.

- 1. J.R. Cudell, et al., COMPLETE Collaboration, Phys. Rev. D 65 (2002) 074024
- M. Ishida, K. Igi, Phys. Rev. D 79 (2009) 096003.
- 3. A.A. Arkhipov, hep-ph/9909531, hep-ph/9911533, 1999

Geant4: Glauber calculations vs data

Lines are Glauber calculations, points are various exp. data

Parametrisation used in GEANT4

Direct Glauber calculations in GEANT4 in a run-time mode are too heavy → parametrise Glauber calculations with [1] :

$$\sigma_{hA}^{tot} = 2\pi R_A^2 \ln \left[1 + \frac{A\sigma_{hN}^{tot}}{2\pi R_A^2} \right] \qquad \sigma_{BA}^{tot} = 2\pi \left(R_B^2 + R_A^2 \right) \ln \left[1 + \frac{BA\sigma_{NN}^{tot}}{2\pi \left(R_B^2 + R_A^2 \right)} \right]$$

$$\sigma_{hA}^{in} = \pi R_A^2 \ln \left[1 + \frac{A\sigma_{hN}^{tot}}{\pi R_A^2} \right], \qquad \sigma_{BA}^{in} = \pi \left(R_B^2 + R_A^2 \right) \ln \left[1 + \frac{BA\sigma_{hN}^{tot}}{\pi \left(R_B^2 + R_A^2 \right)} \right],$$

 R_A cannot be directly connected with known values due to some simplifications Use equations as a determination of R_A having calculated σ_{hA} and σ_{BA} with Glauber

For total cross-section:

$$\bar{p}A R_A = 1.34A^{0.23} + 1.35/A^{1/3} \text{ (fm)},$$
 $\bar{d}A R_A = 1.46A^{0.21} + 1.45/A^{1/3} \text{ (fm)},$
 $\bar{t}A R_A = 1.40A^{0.21} + 1.63/A^{1/3} \text{ (fm)},$
 $\bar{\alpha}A R_A = 1.35A^{0.21} + 1.10/A^{1/3} \text{ (fm)}.$

For inelastic cross-section:

$$\bar{p}A R_A = 1.31A^{0.22} + 0.90/A^{1/3} \text{ (fm)},$$
 $\bar{d}A R_A = 1.38A^{0.21} + 1.55/A^{1/3} \text{ (fm)},$
 $\bar{t}A R_A = 1.34A^{0.21} + 1.51/A^{1/3} \text{ (fm)},$
 $\bar{\alpha}A R_A = 1.30A^{0.21} + 1.05/A^{1/3} \text{ (fm)}.$

1. V.M. Grichine, Eur. Phys. J. C 62 (2009) 399, Nucl. Instrum. Methods B 267 (2009) 2460

Uncertainty due to σ_{inel} (proton)

How precise σ_{inel} (proton) is described by Geant4?

- Check available experimental data (Be,B,C,O,Al,Fe,Cu,Ge,Sn,Pb)
- Vary Geant4 parametrisation, calculate χ^2 for all data points
- Minimum χ^2 and $\pm 1\sigma$: 0.9925 +0.0375 -0.0325

Uncertainty due to σ_{inel} (deuteron)

How precise σ_{inel} (deuteron) is described by Geant4?

- Check available experimental data (Be, C, O,Si, Sn, Pb)
- Vary Geant4 parametrisation, calculate χ^2 for all data points
- Minimum χ^2 and $\pm 1\sigma$: 1.0175 +0.0625 -0.0475
 - Agreement is worse for Sn and Pb

Total uncertainties on raw ratios

Fig. 62: Summary of all uncertainties used for the constraints on $\sigma_{inel}(\bar{p})$ (left) and on $\sigma_{inel}(\bar{d})$ (right). For the total uncertainty, individual sources are added in quadrature.

(Linear) dependence between \bar{d} / d and $\sigma_{inel}(\bar{d})$

- Vary σ_{inel}(d) in simple Geant4 model from 0 to 200%
 - Central value is scaled by hand to match full MC simulations
 - Relative change of d / d is in good agreement with full MC
- Almost no deviation from linear dependence in whole $\sigma_{inel}(\bar{d})$ range
- Constraints on $\sigma_{inel}(\bar{d})$ are extracted from full MC simulations (magenta line)

(Linear) dependence between \bar{d} / d and $\sigma_{inel}(\bar{d})$

- Vary σ_{inel}(d) in simple Geant4 model from 0 to 200%
- Some deviation from linear dependence, but very close to linear inside ±2σ limits
- Constraints on $\sigma_{inel}(\bar{d})$ are extracted from full MC simulations (magenta line) Ratio is much more sensitive to $\sigma_{inel}(\bar{d})$ variations than at low p! (much steeper slope)
- Motivation for the TOF (anti-)deuteron analysis starting from lower p

Large Hadron Collider as an anti-matter factory

At LHC energies, matter and anti-matter are produced in almost equal amounts

• (Anti-)deuterons interact inelastically with detector material - this can be quantified!

This talk: results from p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, ~300 M events

Extrapolations for $\sqrt{s_{NN}}$ = 5.02 TeV:

• \overline{p}/p : R = 0.984 ± 0.015

• \rightarrow d/d: **R** = **0.968** ± **0.030** (d/d ~ $(\overline{p}/p)^2$)

\bar{d}/d and $(\bar{p}/p)^2$ ratios vs p_T [1]

\overline{p}/p ratio at mid-rapidity vs \sqrt{s} [1]

Large Hadron Collider as an anti-matter factory

At LHC energies, particles and anti-particles are produced in almost equal amounts

- Protons and deuterons: only ~5% and ~0.005% of all charged particles
 - Penalty factor of ~1000 to produce one additional nucleon (in pp collisions)

(Anti-)deuteron momentum spectra in pp collisions [1]

Integrated yield at mid-rapidity [1]

A Large Ion Collider Experiment

ALICE detector material as a target

Material budget at mid-rapidity:

- Beam pipe (~0.3% X₀): beryllium
- ITS (~8% X₀): silicon detectors, carbon supporting structures
- **TPC** (~4% X₀): Ar/CO₂ gas (88/12), nomex field cage
- TRD (~25% X₀): carbon/polypropylene fibre radiator, Xe/CO₂ gas, carbon supporting structures
- Space frame (~20% X₀ between TPC and TOF detectors): stainless steel

Tables of detector materials

Table D.1: List of ITS materials

Table D.1: List of 1	15 materials	
Material	Thickness, mm	
SPD C (M55J)	0,9955	
SPD Bus	0,6484	
SPD C shield	1,336	
SPD Kapton	0,1522	
SPD Si chip	0,4348	
SSD C (M55J)	1,2834	
SDD C (M55J)	0,513	
SDD X7R Weld	0,0153	
SDD Kapton	1,187	
SDD Si insensitive	0,1168	
SDD Si	1,811	
SDD Si chip	0,0773	
SDD C Al (M55J)	0,678	
SDD X7R capacitor	0,0032	
SDD ruby	0,0244	
Air	502,1	
Water	0,3122	
Rohacell	15,401	
RYTON	0,0775	
Nickel	0,0102	
ITS Sn	0,0017	
Copper	0,0248	
STD Glass	0,0066	
GEN C	0,344	
Al	0,396	
KaptonH (POLYCH2)	0,139	
Ceramics	0,0305	
G10Fr4	0,04135	
NiSn	0,0107	
Inox	0,0966	
Freon	0,290	
EPOXY	0,2134	

Material	Description	Thickness	Density	X/X_0
		[cm]	$[\mathrm{g/cm^3}]$	[%]
Mylar	Mylar layer on radiator	0.0015	1.39	0.005
Carbon	Carbon fiber mats	0.0055	1.75	0.023
Araldite	Glue on the fiber mats	0.0065	1.12	0.018
Rohacell	Sandwich structure	0.8	0.075	0.149
PP	Fiber mats inside radiator	3.186	0.068	0.490
$\overline{ m Xe/CO_2}$	The drift region	3.0	0.00495	0.167
Xe/CO_2	The amplification region	0.7	0.00495	0.039
Copper	Wire planes	0.00011	8.96	0.008
Copper	Copper of pad plane	0.0025	8.96	0.174
G10	PCB of pad plane	0.0356	2.0	0.239
Araldite	Glue on pad plane	0.0923	1.12	0.249
Araldite	+ additional glue (leaks)	0.0505	1.12	0.107
Carbon	Carbon fiber mats	0.019	1.75	0.078
Aramide	Honeycomb structure	2.0299	0.032	0.169
G10	PCB of readout boards	0.0486	2.0	0.326
Copper	Copper of readout boards	0.0057	8.96	0.404
Copper	Electronics and cables	0.0029	8.96	0.202

Fig. D.1: List of materials of a single TRD readout chamber [1]

Table D.2: List of TPC materials [12, 13]

Material	Thickness, mm
Aluminium	0,2
Tedlar	0,4
Prepreg	2,4
Nomex	90
CO2	300
Macrolon rods	2,32
Ar/CO2 (90/10)	1700

Estimation of p^* for anti-deuterons

- As estimation for p*: use last available momentum in Track Refs
 - ITS-TPC analysis: if particle didn't reach TRD, store p_{VTX} or p_{ITS} or p_{TPC}
 - TOF analysis: if particle didn't reach TOF, store p_{VTX} or p_{ITS} or p_{TPC} or p_{TRD}
- Black points/errors: profile of 2d map (mean ± RMS)

ITS-TPC analysis

TOF analysis

- These maps are used for transformation $p \rightarrow p^*$
- Significant uncertainties, inelastic interaction happens at various momenta $p^* < p$

- No correction for $p \to p^*$ (consistent with upper uncertainties on the left)
 - "MIN" parameterisation (minimal effect for $p \rightarrow p^*$)

- Using mean values for $p \rightarrow p^*$ (black points on the left)
 - "MEAN" parameterisation (average effect for $p \rightarrow p^*$)

- Using lower uncertainties for $p \rightarrow p^*$
 - "MAX" parameterisation (maximal effect for $p \rightarrow p^*$)

- Different parameterisations should be taken into account as uncertainty
 - In principle uncertainty along x axis

- Different parameterisations should be taken into account as uncertainty
 - In principle uncertainty along x axis

Draw constraints on $\sigma_{\text{inel}}(\bar{d})$ so that the results include possible uncertainty from $p \to p^*$

- Momentum range: according to MEAN transformation
- For constraints on $\sigma_{inel}(\bar{d})$: take the widest band from 3 parameterisations

- Different parameterisations should be taken into account as uncertainty
 - In principle uncertainty along x axis

- Different parameterisations should be taken into account as uncertainty
 - In principle uncertainty along x axis

Draw constraints on $\sigma_{\text{inel}}(\bar{d})$ so that the results include possible uncertainty from $p \to p^*$

- Momentum range: according to MEAN transformation
- For constraints on $\sigma_{inel}(\bar{d})$: take the widest band from 3 parameterisations