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VERTEX	2020
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radiation	tolerance	CMOS	sensors	
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LHC	Introduction	

We	are	here

§ LHC	is	going	through	a	series	of	upgrades
§ HL-LHC	will	deliver	3000	fb-1 after	Phase	II
§ Luminosities	from	7.5	to	30	x	1034 cm-2 s-1
§ And	from	200	up	to	1000	interactions	per	bunch	crossing
§ These	upgrades	present	many	challenges	for	electronics	and	radiation	

hardness
§ Monolithic	pixel		detectors	could	address	these	challenges	for	the	LHC	and	

beyond
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Pixel	sensors	at	the	LHC
§ Higher	rates	of	~2MHz/mm2 require	

smaller	sensors	to	separate	individual	
particles

§ Pixel	detectors	have	to	overcome	high	
radiation	requirements	of 1e15	to	2e15
neq/cm2 NIEL

§ Pixel	detectors	can	overcome	fast	timing	
of	25ns bunch	crossing

§ Interesting	for	studies	beyond	HL-LHC
q FCC	recommended	by	2020	Update	of	

the	European	Strategy	for	Particle	
Physics

q Monolithic	pixel	sensors	present	a	high	
potential	for	HEP	with	low	power	
consumption	(<0.5W/cm2 )	and	
industrial-like		production

ATLAS	Inner	detector

CMS	pixel	detector
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Depleted	Monolithic	Active	Pixel	Sensors

RnD designs	for	Depleted	Monolithic	Active	Pixel	Sensors	(MAPS)	
on	the	search	for	best	performance	and	radiation	hardness
§ Large	electrode

q Large	capacitance		(~100	fF)
q Electronics	in	collection	well
q Higher	noise		(due	to	larger	sensor	capacitance)
q Potential	crosstalk	between	digital	and	analog	sections

§ Small	electrode	
q Low	capacitance	(~5	fF)
q Electronics	separated	from	collection	well
q Lower	noise	(small	capacitance	for	high	SNR)
q Separate	digital	and	analog	electronics
q Need	process	modification	for	radiation	hardness

§ Buried	electrode
q Separated	layers	for	electronics	and	sensor	
q To	overcome	radiation	ionization	charge	trapped	in	the	non	depleted	

part

To	be	compared	with	Hybrid	sensors
q More	expensive	and	complex	
q Two	chips:	Sensor	and	a	read-out	chips
q Large	electrodes	and	large	capacitance
q Buried	electrodes Tw

o	
ch
ip
s

Small	electrode

Large	electrode

Buried	electrode

Read-out

Sensor

Electrode
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TowerJazz 180	nm	CMOS	technology

Substrate p++                                                                           
Epitaxial layer p-                                                                      

Deep p-well

n-wellp-well p-well

TRANSISTORS
NMOS PMOS NMOSn-well n-well

DRIFT

DIFFUSION

n-well n-well

Standard	
process

Modified	with	
continuous	n-layer

Standard
§ Small	collection	electrode (~3	μm2)	

with	high-resistivity	Epi	layer	
§ Small	input	capacitance	(<	3	fF)
§ Small	depletion	depth	(~20	μm)	
§ High	signal	to	noise	ratio	(~20)

§ Extra	n-type	layer	to	improve	
depletion	under	the	deep	p-well

§ Overcome	diffusion	which	makes	
collection	slower	

Continuous	 N-layer

Processes	already	used	in	Alice	(ALPIDE)

W.	Snoeys,	NIM	A	871	(2017)	90-96
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TowerJazz 180	nm	CMOS	technology

M.	Dyndal, JINST	15	(2020)	P02005

M.	Mironova,	NIM	A	956	(2020)	163381

Process	modifications for	radiation	hardness
§ Continuous	n-layer	(Cont.):	Full	lateral	depletion.	

(See	prev.	slide)
§ Gap	in	the	n-layer	(n-gap):	Modification	of	the	mask
§ Extra	deep	p-well	implant	(EDPW):	Additional	mask

Gap	in	the	n-layer Extra	deep	p-well

More	details	and	description	of	the	
process	modification	and	summary	
of	results	in:

Magdalena,	M. Munker PIXEL	2018
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Development
MALTA1	&	MLVL

Mini-MALTA
And

Mini-MALTA	ATTRACT

MALTA	C
and
MALTA	Cz

Jan	2018	
Jun	2018

• Large	demonstrator	2x2
• Asynchronous	readout
• Slowcontrol issues

From
Jan	2019

• Large	demonstrator	2x2
• Slow	control	improvements
• Enlarged	cluster	size	and	

improved	time	resolution

From
Aug	2019

• Small	demonstrator	1.7x0.5
• Serial	output

• Full	efficiency	after	1e15	n/cm2

MALTA	2 • Smaller	matrix	2x1
• New	Slowcontrol
• Baseline	for	CERN	EP	R&D	

WP	1.2

Oct	2020

• Continuous	n-layer
• MLVLC

• Cascoded FE
• Process	modification

• 3 types	of	
process	
modification

• Mini-MALTA	FE
• 3	types	of	process	

modification
• Different	doping	levels

Sensor	modifications Chip

stream.web.cern.ch
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TJ	MALTA	sensor
§ Matrix	512	x	512	pixels	of	36.4	x	36.4	μm2

size
§ 8	sectors	with	different	pixel	flavors
§ Fully	clock-less	matrix	architecture
§ Asynchronous	readout	architecture	for	

high	hit	rates	and	fast	signal	response.	
Parallel	read-out	bus	37bit.	

§ 10	mW/cm2 digital	power
§ Small	collection	electrode	of	2-3	μm to	

achieve	minimal	capacitance	<3fF
§ 3.4	- 4	μm spacing	to	electronics
§ Very	low	power	consumption:

q 1	μW/pixel	analog	power
q 70	mW/cm2 analog	power

22
m
m

20	mm

MALTA	pixel	

MALTA	sectors
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Possible	MALTA	application
Using	MALTA	to	trigger	telescope
§ Xilinx	Virtex-7	FPGA	VC707	for	readout
§ Trigger	from	MALTA	planes	as	combination	reference	

signals	and	compatible	with	AIDA	telescopes

DESY

Telescope	details:
§ 4	to	6	MALTA	planes	(100	μm thick,	36μm	pitch	size)
§ Achieving	14	μm track-hit	resolution	using	only	3	

tracking	planes	and	General	Broken	Line	(GBL)	algorithm	
in	Proteus	with	3	e- GeV	beam	in	DESY

§ Carry-on	telescope	during	LS2	with	linear	stage	for	
alignment

§ Based	on	custom	multi	threaded	application
§ USB	based	PSU	control	

MALTA	planes

Scintillator

BeamMALTA	planes

DUT

Improved	DAQ	interface

Setup	with	DUT	cold	down	to	-20℃ by	Si-oil	system	



10/7/20 Ignacio	Asensi 10

MALTA	telescope	TLU
Custom	Kintex based	Trigger	Logic	
Unit	(TLU)
§ VHDL	FW,	CMS	IPbus and	C++/python	driven	
§ Veto,	signals	width	and	combination	logic	

configurable	from	GUI
§ Support	for	scintillator	and	up	to	6	planes

TLU	GUI	operating	and	monitoring	telescope

Test	with	Sr-90
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Standard	
front-end

Enlarged	
transistors

TJ	Mini-MALTA	sensor

§ Matrix	64x16 pixel	with	36.4μm pitch
§ 8	sectors	with	different	analogue	front-

end	design
§ Asynchronous	read-out
§ Improved	SlowControl implementation
§ Single	serial	data	stream:	40Mbs	or	1.2	

Gpbs with	8b10b	encoding

1770	µm

50
00

	µ
m

Pixel	matrix

Slow	Control

Sync	
FIFO

DACs
Clock	Receiver

LVDS	1.2	Gb/s

LVDS	40	Mb/s

§ Implemented	gap	in	n- layer	and	
extra	deep	p-well	process	
modifications

§ Periphery	data	synchronization	using	
a	custom	RAM	memory

§ Larger	capacitors	to	reduce	noise

Aim	to	improve	MALTA	efficiency	loss	after	irradiation
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Mini-MALTA	efficiency	map
§ Full	efficiency	after	

irradiation	at	200	e-
threshold	at	6V	bias	on	
sectors	with	enlarged	
transistors

§ Due	to	improved	charge	
collection	in	the	pixel	
corners	with	respect	to	
previous	design	(MALTA	
1)

§ Also	observed	with	
focused	x-ray	beam	at	
Diamond	Light	Source	
(next	slide)

60

65

70

75

80

85

90

95

100

Ef
fic

ie
nc

y 
[%

]

0 2 4 6 8 10 12 14 16
pixel X-coordinate

0

10

20

30

40

50

60

pi
xe

l Y
-c

oo
rd

in
at

e

)2 neq/cm1510´W2R1@SUB=6V (1

Thr. = 200e Thr. = 340e

Enlarged	
transistors	

Std	size	
transistors	

*	Irradiated	to	1e15	n/cm2,	and	measured	with	2	GeV	electron	beam	at	ELSA,	with	6	V	bias	voltage.	

Enlarged	
transistors	

Std	size	
transistors	

Irradiated*Non	irradiated

JINST	15	(2020)	02,	P02005
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Mini-MALTA	at	Diamond

Continuous	n-layer Extra	deep	p-well

W
2R

11
	U
n-
irr
ad

ia
te
d Gap	in	n-layer

W
2R

1

*	Neutron-irradiated	to	1e15	n/cm2

Irr
ad

ia
te
d*

§ Photon	pixel	response	as	function	of	dose
q Reduction	of	pixel	response	in	continuous	n-layer	of	10%
q Almost	no	reduction	on	extra	deep	p-well	and	n-gap

M.	Mironova,	NIM	A	956	(2020)	163381
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Mini-MALTA	efficiency	vs	threshold
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Efficiency	versus	threshold	for	two	different	Mini-MALTA	samples,	
neutron	irradiated	to	1e15	neq/cm2,	and	measured	with	2	GeV	electron	beam	
at	ELSA,	with	6	V	bias	voltage

§ Efficiency	above	97%	
sensor	modification	with	
enlarged	transitions

§ Higher	efficiency	for	
enlarged	transistors

§ Efficiency	above	90%		
after	2e15	neq/cm2

irradiation	(see	backup	
slide)
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Mini-MALTA	- Noise	after	100Mrad

Mini-MALTA	x-ray	irradiated	to	a	TID	100	Mrad Fe	
fluorescense
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Enlarged transistors front end

Standard MALTA front end

Noise mean vs TID

§ Noise	increase	10e- to	
20e- during	irradiation		
on	enlarged	
transistors

§ 10e- to	30e- on	
standard	front-end

X-ray	irradiations	at	Glasgow
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Enlarged transistors front end

Standard MALTA front end

Amplitude of FE target as a funcion of TID

Mini-MALTA	- Noise	and	gain	after	100Mrad

§ Analog	performance	
measured	during	irradiation

§ Higher	gain	for	enlarged	
transistors	

§ Unchanged	after	dose	but	
with	slight	increase	and	then		
stabilization

Mini-MALTA	γ-irradiated	to	a	TID	100	Mrad Fe	
fluorescense

X-ray	irradiations	at	Glasgow
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MALTA	Czochralski (Cz)	
Processed	with	high	resistivity	Cz substrate	material
§ Larger	depletion	voltage	and	signal
§ Higher	radiation	hardness
§ High	operation	voltage	up	to	50V

q High	depletion	depth
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MALTA	CZ	- Efficiency

Irradiated	at	DESY	with	4	GeV	electron	beam

§ Radiation	hardness	of	full	size	MALTA	with	Cz
§ From	98.5	(un-irradiated)	to	95.4	%	efficiency	after	
2x1015 n/cm2

Check	Hiroshima Presentation	H.Pernegger HSTD12
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Before	irradiation
§ Cz has	higher	cluster	size	(1.8)
§ And	more	charge	collection	sharing
§ N-gap	modification	has	worse	

performance	
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§ 1x1015	MeV	neq/cm2	at	DESY	with	3	
GeV	electron	beam

§ Cz standard	more	affected	by	
irradiation	:	From	1.8	to	1.2

§ Cz n-gap	modification	less	affected:	
From	1.4	to	1.2	

Epi	(Non	irradiated)
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MALTA	CZ	– Efficiency	and	Cluster	size

§ Cluster	size
q We	observe	a	smooth	increase	

when	increasing	the	voltage

§ Efficiency
q Large	discontinuities	observed	

at	8V	to	~12V	and	slighter	over	
30V

Sr-90	measurements	in	the	lab
IDB:	Threshold	for	the	discriminator
ITHR:	Pulse	duration	of	the	amplifier	output

* Note	at	30V
Power	supply	replacement	and	higher	room	temperature

*

[V]
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Mini-MALTA	ATTRACT
Front-end

Gain:	2.72/0.34

Gain:	1.78/0.26

Cascode enlarged

enlarged

§ All	sectors	have	cascode front-end	(M3)	
and	enlarged	transistors

§ Sectors	0	to	3	have	higher	gain	(CS,	M4,	
M6)

§ Sectors	0	and	4	are	1.2	um	EDPW
§ Sectors	1	and	5	are	2	um	EDPW
§ Sectors	2	and	6	are	standard	n-layer
§ Sectors	3	and	7	are	NGAP

Mini-MALTA

Mini-MALTA
ATTRACT

standard
enlarged

Lower	thresholds
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Mini-MALTA	ATTRACT	- threshold	- IDB

Mini-MALTA	ATTRACT	with	full	
cascoded front-end
§ Preliminary	results
§ Improvements	in	Front-end	

control	and	threshold
§ Cascoded FE	allows	to	reach	

thresholds	below	100e
§ Also	more	consistent	values	

between	enlarged	and	standard	
transistors

PWELL	=	-6V

Old	
Mini-MALTA

Mini-MALTA
ATTRACT
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MALTA	2
§ Submission	on	mid	October	2020	
§ 20.2x10.1mm	sensor.	Almost	half	size	of	MALTA
§ Matrix	of	224x512	pixels	of	36.4	um	size
§ New	sensor	with	gain	optimized	to	improve	time	resolution
§ 4322	bit	shift	register	as	new	Slow	Control
§ Enlarged	transistors	from	Mini-MALTA
§ Half	sensor	cascode front-end	for	higher	gain	and	reduced	

RTS	noise
§ Applying	all	the	knowledge	we	learnt	from	MALTA	C,	

Mini-MALTA,	ATTRACT	and		Czochralski

Analog	front	end	modifications

MALTA	2	two	front-end	flavors

2.7x	larger.	
Filtering	
capacitance

Cascode

2.4x	of	the	largest
of	Mini-MALTA
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Conclusions

§ MALTA	monolithic	CMOS	sensor	continues	
improving	performance	with	Mini-MALTA	and	Cz
versions

§ Modifications	n-gap	and	extra	deep	p-well	show	
full	efficiency	after	100Mrad	and	1015neq/cm2

§ Many	improvements	applied	to	the	design	of	
MALTA	2	which	will	be	submitted	mid	October
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Backup
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Hybrid	vs	Monolithic	sensors

§ Popular	in	current	LHC	detectors
§ Proven	radiation	hardness
§ Dedicated	front-end	electronics	bonded	to	the	

sensor
§ Thicker	modules
§ Complex	and	costly	assembly	due	to	fine-pitch	

bump	bonding

§ Radiation	hardness	in	research
§ Electronics	and	sensor	integrated	on	a	

single	chip
§ Low	cost	per	wafer
§ Thinner	modules
§ Substantial	cost	reduction	and	reduced	

module	assembly	time

Hybrid Monolithic
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Modifications	time	line	overview

MALTA1	&	MLVL

Mini-MALTA

MALTA	C

Jan	2018

Jan	2019

Aug	2019

MALTA	2

MALTA	Cz

§ Sensor

§ Front-end

Mini-MALTA
ATTRACT

May	2020

§ Sensors

§ Front-end

§ Sensors

§ Front-end

§ Sensors

§ Front-end

§ New	SlowControl

§ Cascoded

§ SlowControl fix

§ Front-end

Oct	2019

§ SlowControl fix

§ Front-end

§ Sensors § Sensors

§ Cascoded

Submission	
mid	Oct	2020
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MALTA	telescope	tracking
Using	General	Broken	Lines	(GBL)	
algorithm	to	mitigate	multiple	
scattering	effects
§ Tracking	resolution

q Distance	from	the	cluster	
barycenter	to	the	track	
intercept	using	a	clusterizer
algorithm

§ Embedded	in	Proteus	software
§ Using	MALTA	Cz un-irradiated

From	ELSA	test	beam	Apr	2019
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MALTA	read-out	architecture	
§ Novel	asynchronous	readout	architecture	for	

high	hit	rate	capability	with	40	bit	parallel	data	
bus	for	data	streaming
q Groups	of	2x8	pixels	with	pattern	assignment	

to	reduce	data	size	from	clusters
q Front-end	discriminator	output	is	processed	by	

a	double-column	digital	logic
q Pulse	width	adjustable	between	0.5	ns	and	2	

ns
q Data	transmitted	asynchronously	over	high	

speed	bus	to	end	of	column
§ At	the	periphery,	arbitration	and	merging	

resolves	timing	conflicts	of	simultaneous	signals	
q Timing	information	stored	in	dedicated	bits
q Output	signals	transmitted	by	5	Gbps LVDS	

driver
§ Virtex VC707	implementation

q 38	asynchronous	oversample
q 400ps	hit	arrival	precision
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Mini-MALTA

Sectors
M
od

ifi
ed

	
Pr
oc
es
s

M
od

ifi
ed

	
Pr
oc
es
s	p

lu
s	

ad
di
tio

na
l	

DP
W

M
od

ifi
ed

	
Pr
oc
es
s	w

ith
	

ga
p	
in
	n
-



10/7/20 Ignacio	Asensi 33

Mini-MALTA	efficiency	vs	threshold

Efficiency	versus	threshold	for	two	different	Mini-MALTA	samples,	
neutron	irradiated	to	2e15	neq/cm2,	and	measured	with	2	GeV	electron	beam	
at	ELSA,	with	6	V	bias	voltage

§ Efficiency	above	97%	
sensor	modification	with	
enlarged	transitions

§ Higher	efficiency	for	
enlarged	transistors

§ Efficiency	above	90%		
after	2e15	neq/cm2

irradiation	(see	backup	
slide)


