

Depleted Monolithic Active Pixel Sensors in LF 150nm and TJ 180 nm CMOS technologies: The Monopix developments

Vertex 2020 conference October 7th, 2020

Marlon Barbero, CPPM, Aix-Marseille University, CNRS / IN2P3, France
On behalf of

Introduction

1- Introduction

- 2- TJ 180 nm TJ-Monopix development
- 3- LF 150 nm LF-Monopix development
- 4- Conclusion

Monolithic depleted CMOS

Depleted

monolithic

CMOS Pixels

active

In some context, could provide advantageous alternative to hybrid pixels.

Key ingredients:

- Charges collected by drift.
 - to go above $\sim 10^{13} \, n_{\rm eq}.\rm cm^{-2}$, collecting charge by diffusion is problematic \rightarrow drift (hence standard MAPS \rightarrow Depleted MAPS).
- Consequence → Fast signal response & radiation hardness.
- Technology requirements → High Voltage process (apply 50-200 V), High Resistive wafers (>100Ωcm) and multiple nested wells (for full CMOS & shield)

(depleted layer: $d \sim \sqrt{\rho \cdot V}$)

p- substrate

Advantages:

- Usage of commercial process: production capability, reliability, low cost...
- Simple less expensive module (wrt hybrid): no hybridization and much easier production! Can be used for larger area applications
- Small pixel size possible (in some process)
- Less power, less material...

MAPS and DMAPS

STAR experiment

1st MAPS-based vertex detector for HEP

ALPIDE for ALICE upgrade

- DMAPS Monopix development based on original specs for ATLAS ITk outer pixel layer: NIEL > 10^{15} n_{eq}.cm⁻², TID > 80 Mrad, Hit Rate > 100 MHz.cm⁻²
- Higher radiation hardness & faster readout need:
 - → Cope with NIEL / trapping:
 - Fast collection by drift
 - \rightarrow Have high time resolution:
 - Fast collection by drift
 - Fast analog FE
 - Time stamping on chip

- → Cope with high TID:
 - Process + design methodology
- → Cope with high hit rate:
 - Fast return to baseline in analog
 FE (<~ 1 μs, avoids pile-up)
 - High logic density
 - High output bandwidth

Specifications vs. environments

In terms of radiation hardness and speed:

	STAR	ALICE	e.g. futur e+e-: ILC	ATLAS HL-LHC Outer layer	ATLAS HL-LHC Inner layer
Fluence [neq.cm-2]	10 ¹²	2.10^{13}	10 ¹²	2.10 ¹⁵	2.10 ¹⁶
TID [MRad]	0.2	<3	0.4	100	1000
Timing [ns]	~200000	20000	O(1000)	25	25
Hit rate [kHz.mm-2]	4	10	250	1000	10000

DMAPS CMOS Community

Collaboration of ~25 institutes (european project STREAM)

Many technologies tried, but focus last ~3 years has been on: AMS/TSI 180 nm, LF 150 nm, and TJ 180nm

CMOS sensor development lines

Monolithic sensors with electronics all in one!

(a) large electrode design

- LFoundry 150 process (or AMS/TSI 180)
- <u>Pros</u>:
 - Full CMOS
 - Uniform field, short drift distance \rightarrow radiation hardness (TID & NIEL), 2.10¹⁵ n_{eq}.cm⁻² proven
 - HV rev. bias > 300V possible
 - BS thinning and processing possible
- Cons:
 - Deep nwell Q collection → big Capacitance
 (>200 fF) → noise, power & crosstalk
- I. Peric, DOI: 10.1016/j.nima.2007.07.115
- T. Kishishita, et al., DOI: 10.1088/1748-0221/10/03/C03047
- P. Rymaszewski, et al., DOI: 10.1088/1748-0221/11/02/C02045
- T. Hirono, et al., DOI: 10.1109/NSSMIC.2016.8069902

(b) small electrode design

- TowerJazz 180 process
- Pros:
 - Full CMOS
 - Small capacitance (<10fF) → low noise, less crosstalk & low power.
 - Thin detector possible.
- Cons:
 - Limited depletion, long drift distance, low field region → radiation hardness TBD

R. Turchetta, et al., DOI: 10.1016/S0168-9002(00)00893-7 W. Dulinski, et al., DOI: 10.1109/TNS.2004.832947 A. Dorokhov, et al., DOI: 10.1016/j.nima.2010.12.112 M. Havránek, et al., DOI: 10.1088/1748-0221/10/02/P02013

- 1- Introduction
- 2- TJ 180 nm TJ-Monopix development
- 3- LF 150 nm LF-Monopix development
- 4- Conclusion

TJ 180nm: process modification

- A small electrode design:
 - Small pixel size (< 50 μm²)
 - Low capacitance (<3 fF)
 - Low power
 - Reduced digital-analog Xtalk

Collection electrode

Analog part

Digital part

- ... but suffers from limited radiation-hardness → Requires process modification!

- Standard TJ 180 nm Process:
 - High resistivity p-type epi layer (> $1k\Omega.cm$)
 - Depleted region stays limited (in particular after irradiation)
 - ALPIDE-like

- Modified TJ 180 nm Process:
 - Additional n- implant → full depletion possible
 - Keeps small capacitance & no big changes to electronic layout
 - MALTA / MONOPIX

TJ: The Digital Architectures

- 2 approaches have been followed:
 - TJ-Malta1:
 - Asynchronous readout: high hit rate, fast signal response, very low power
 - → Lead to TJ-Malta2 developments.

Talk I. Tortajada, Oct 7th

- TJ-Monopix1:
 - Synchronous readout (a la FE-I3 IC): column drain architecture, ToT measurement

This talk

Loss of efficiency in corners

The field configuration under the DPWell far from the collection electrode is the issue:

- Requires full depletion under DPW
- Need transversal field components in corners → proposition of extra process modification(s)
- Operation at low threshold essential

Process optimization for radiation hardness: MiniMALTA

- several possibilities found:
 - Deep p well extra implant.
 - Gap in n-type implant.

Change field configuration under DPW to "push" charges towards collection electrode

- Fully functional, but efficiency drop after irradiation.

ENC / 350 e- threshold): 97%

TJ-Monopix2:

- Full-scale small-collection diode with improved charge collection.

(23 e- ENC / 570 e- thresh.)

- Decrease minimal threshold.
- Joint TJ-Malta + TJ-Monopix submission!
- Design on-going, final verification on-going (1st mock layout already sent to founder...).

TJ-Monopix2 sensor

Kostas Moustakas

TJ-Monopix2 FE

3-bit threshold tuning

- Low threshold operation crucial! → New FE design for higher gain and less noise.
- Threshold adjustment on pixel level.
- New implant designs, reset optimization

The TJ-Monopix2 2×2 pixel

- \rightarrow Built as 2×2 core (area \downarrow)
- → Readout Logic based on Column Drain architecture a la FE-I3
- → 7-bit BCID Time-Stamp
- → Fast token: Internal token ring & group token
 - → Propagation delay reduced from >100 ns to 35 ns
 - → Does not impact readout speed (< 50 ns)
- → Readout logic improvements to mitigate timing issues related to READ slope
- → Hit delay through column for compensation of BCID propagation time

- → 4 flavors: Normal, Cascode, HV, HV Cascode
- → Modular 8-bit DAC, 32 column grouping for voltage drop compensation
- → LVDS TX, RX designed for 5 Gbps
- \rightarrow Power:
 - → 4 domains: Matrix Analog, Matrix Digital, DAC, Digital Periphery
 - → Matrix analog: ~90 mW.cm⁻²
 - → BCID distribution: ~80 mW.cm⁻²
 - → Periphery: ~ 60 mW

TJ-Monopix2 Chip Overview

	TJ-Monopix1	TJ-Monopix2
Chip Size	1x2 cm ² (224x448 pix)	2x2 cm ² (512x512 pix)
Pixel size	36 × 40 μm²	33.04 × 33.04 μm²
Noise	≅ 11 e ⁻	< 10 e ⁻ (improved FE)
LE/TE time stamp	6-bit	7-bit
Threshold Dispersion	≅ 30 e⁻rms	< 15 e ⁻ rms (improved FE + tuning)
Minimum threshold	≅ 300 e⁻	< 100 e-
In-time threshold	≅ 400e⁻	< 150 e ⁻
Efficiency (epi)	\cong 70 % (irradiated)	> 95% (irradiated)

* Expectations

→ Submission TJ-MALTA2 + TJ-MONOPIX2 mid-October!

- 1- Introduction
- 2- TJ 180 nm TJ-Monopix development
- 3- LF 150 nm LF-Monopix development
- 4- Conclusion

LF DMAPS development line

- A large collection diode design:
 - LF 150 nm process
 - Multiple nested wells
 - 6 metal layers + thick top
 - Substrate resistivity > $2k\Omega$.cm
 - Backside thinning and processing

Several prototypes:

- Pixel size: 33×125 μm²

- Chip size: 5×5 mm²

Fast Readout with FE-I4

- Thickness: 750/300/100 μm

- Pixel size: 50×250 μm²

- Chip size: 10×10 mm²

- Fast Readout with FE-I4

- Thickness: 750/300/100 μm

LF-CPIX (subm. Feb.16)

LF-Monopix1 (subm. Aug.16)

- Pixel size: 50×250 μm²

- Chip size: 10×10 mm²

Monolithic: Includes
 Column Drain Readout.

Thickness: 750/300/100 μm

 $M. \ Barbero \ et \ al. \ doi.org/10.1088/1748-0221/15/05/P05013$

Focus on LF-Monopix1 analog FE

The analog FE uses a Charge Sensitive Amplifier

- Gain independent of large C_{detector}? (~400 fF here!)
 - \rightarrow Small C_f as G ~ 1/C_f (C_f ~ 5fF)
- $\tau_{CSA} \alpha \frac{c_D}{g_m \cdot c_f}$ and $ENC^2 \alpha \frac{kT c_D^2}{g_m \tau}$ Need a large g_m for these large C_D !
- Threshold trimming a must (4 bits in-pixel)

Power: ~40 µW/pix in LF-Monopix1

Focus on LF-Monopix1 digital FE

• The digital FE is based on Column Drain Architecture

- It provides 8-bit ToA and ToT
- Full custom design:
 - to minimize area and C_{digital}
 - Low noise design for critical digital blocks
 (e.g. current steering logic)

T. Wang, et al., DOI: 10.1088/1748-0221/12/01/C01039

P. Rymaszewski et al., DOI: http://doi.org/10.22323/1.313.0045 v

LF-Monopix1 performances

Vertical position (mm)

- High breakdown voltage >250 V
 - Improved wrt previous designs

15-25% ENC ↑ / < 5% gain ↓

ENC vs TID

J. Liu, et al, DOI: 10.1088/1748-0221/12/11/C11013 I. Caicedo et. al, DOI: 10.1088/1748-0221/14/06/C06006

High & uniform efficiency after 10¹⁵ n.cm⁻²

- Bias -130V, dry ice cooled
- Thres. ~1700 e-
- 0.2% masked pixels

T. Hirono, et. al, DOI: 10.1016/j.nima.2018.10.059

LF-Monopix1:

- Fully functional, high efficiency after 10¹⁵ n.cm⁻².
- ... but: found (small) crosstalk correlated to digital read signal → can generate spurious signals
- Issue understood (layout)

LF-Monopix2:

- Improved logic and layout (READ signal related → Xtalk reduction)
- BCID propagation better and better Column reading.
- Detector capacitance reduction (for better SNR)
- Lowering of pixel power consumption (preamp and comparator)
- Improved discriminator (faster, better match to 6-bit ToT)
- → Submitted June 2020!

LF-Monopix2 sensor / pixel layout

LF-Monopix2: Analog FE

Explores several CSA flavors:

CSA 1 (a la LF-Monopix1) Folded cascode

CSA 2 Telescopic cascode SF in DC feedback loop

CSA 3 Open loop gain vs BW SF in DC feedback loop

- Try also lower C_f for higher CSA gain, mitigates discriminator dispersion
- Explores 2 discriminators:
 - 1st: a la LF-Monopix1
 - 2nd: Bring improvements to discriminator design for better timing

READ crosstalk fixing

- Was related to the fact the token was cleared by the READ rising edge, which led to switching during READ...
- Change logic to clearing on READ falling edge.

 Solution makes longer read cycle, but avoids unnecessary digital switching during read...

LF-Monopix2 Chip overview

LF-Monopix2 Chip overview

	LF-Monopix1	LF-Monopix2
Pixel size	50 × 250 μm2	50 × 150 μm2
Cd	~ 400 <u>fF</u> (estimated)	250 – 300 <u>fF</u> (estimated)
Analog Power/pixel (CSA + <u>Discri</u> .)	15 μΑ + 5 μΑ = 20 μΑ	10 μΑ + 2 μΑ = 12 μΑ
Noise	~200 e-	100 ~ 150 e ⁻
LE/TE time stamp	8-bit	6-bit
<u>ToT</u> @ 6 <u>ke</u> -		200 – 250 ns
Max. <u>ToT</u>		400 ns
p-p (<u>rms</u>) <u>thres</u> . dispersion	(~ 100 e ⁻)	800 e ⁻ (80 e ⁻)
Min. threshold	1500 e ⁻	1000 e ⁻
In-time threshold	~ 2000 e-	1500 e ⁻

Submitted June 2020 alongside test structures

Conclusion

- 1- Introduction
- 2- TJ 180 nm TJ-Monopix development
- 3- LF 150 nm LF-Monopix development
- 4- Conclusion

The Monopix2 development

Out of ITk (challenging schedule) \rightarrow interesting for post-ITk applications ... e+e- environments or future hh ...

Talk C. Gemme, Oct 6th

IJ-Monopix2: Small pixels, low capacitance, low power design

2×2 cm², 512×512 pixels, 33×33 μm² New implants for better charge collection after irrad, lower threshold Submission foreseen October 2020

2×1 cm², 340×56 pixels, 50×150 μm² Analog and digital FE improvements Smaller pixels, better layout Submitted in June 2020

→ Back Dec. 2020

Thanks

• Many slides / original material / results borrowed from many colleagues:

Tomasz Hemperek, Magdalena Munker, Kostas Moustakas, Patrick Pangaud, Heinz Pernegger, Walter Snoeys, Tianyang Wang, Norbert Wermes... and more...

<u>University of Bonn</u>: C. Bespin, I. Caicedo, J. Dingfelder, T. Hemperek, T. Hirono, F. Hügging, H. Krüger, K. Moustakas, P. Rymaszewski, T. Wang, N. Wermes, S. Zhang

UNIVERSITÄT BONN

<u>CERN</u>: I. Berdalovic, R. Cardella, V. Dao, L. Flores, T. Kugathasan, H. Pernegger, F. Piro, P. Riedler, E. Schioppa, C. Solans, W. Snoeys, C.M. Tobon

Centre de Physique des Particules de Marseille: M. Barbero, P. Barrillon, S. Bhat, P. Breugnon, Z. Chen, A. Habib, P. Pangaud, A. Rozanov

IRFU CEA-Saclay: Y. Degerli, F. Guilloux, F.J. Iguaz, P. Schwemling