
Depleted Monolithic Active Pixel Sensors in LF 
150nm and TJ 180 nm CMOS technologies:      

The Monopix developments

Vertex 2020 conference

October 7th, 2020

Marlon Barbero, CPPM, Aix-Marseille University, CNRS / IN2P3, France

On behalf of



Vertex 2020, Oct. 7th, Monopix DMAPS, Marlon Barbero 2

Introduction

1- Introduction

2- TJ 180 nm TJ-Monopix development

3- LF 150 nm LF-Monopix development

4- Conclusion



Vertex 2020, Oct. 7th, Monopix DMAPS, Marlon Barbero 3

Monolithic depleted CMOS

• In some context, could provide  advantageous alternative to hybrid pixels.

• Key ingredients:

– Charges collected by drift.

• to go above ~ 1013 neq.cm-2, collecting charge by diffusion is problematic  drift 
(hence standard MAPS  Depleted MAPS).

– Consequence  Fast signal response & radiation hardness.

– Technology requirements  High Voltage process (apply 50-200 V), High 
Resistive wafers (>100Ωcm) and multiple nested wells (for full CMOS & shield)

• Advantages:

– Usage of commercial process: production capability, reliability, low cost…

– Simple less expensive module (wrt hybrid): no hybridization and much easier 
production! Can be used for larger area applications

– Small pixel size possible (in some process) 

– Less power, less material…
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MAPS and DMAPS

• STAR experiment                                                ALPIDE for ALICE upgrade

• DMAPS Monopix development based on original specs for ATLAS ITk outer 
pixel layer: NIEL > 1015 neq.cm-2, TID >80 Mrad, Hit Rate > 100 MHz.cm-2

• Higher radiation hardness & faster readout need:

 Cope with NIEL / trapping:

• Fast collection by drift

 Have high time resolution:

• Fast collection by drift

• Fast analog FE

• Time stamping on chip

1st MAPS-based vertex detector for HEP

ULTIMATE IC

ALICE upgrade in LS2

ALPIDE  - TJ180

Talk D. Colella, Oct. 5th

 Cope with high TID:

• Process + design methodology

 Cope with high hit rate:

• Fast return to baseline in analog 
FE (<~ 1 µs, avoids pile-up)

• High logic density

• High output bandwidth
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Specifications vs. environments

• In terms of radiation hardness and speed:

STAR ALICE e.g. futur

e+e-: ILC

ATLAS HL-LHC 

Outer layer

ATLAS HL-LHC 

Inner layer

Fluence

[neq.cm-2]

1012 2.1013 1012 2.1015 2.1016

TID [MRad] 0.2 <3 0.4 100 1000

Timing [ns] ~200000 20000 O(1000) 25 25

Hit rate 

[kHz.mm-2]

4 10 250 1000 10000
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DMAPS CMOS Community

• Collaboration of ~25 institutes (european project STREAM)

• Many technologies tried, but focus last ~3 years has been on: AMS/TSI 
180 nm, LF 150 nm, and TJ 180nm
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CMOS sensor development lines

Monolithic sensors with electronics all in one!

(a) large electrode design                    /                    (b) small electrode design

• LFoundry 150 process (or AMS/TSI 180)

• Pros:

• Full CMOS

• Uniform field, short drift distance   radiation 
hardness (TID & NIEL), 2.1015 neq.cm-2 proven

• HV rev. bias > 300V possible 

• BS thinning and processing possible

• Cons:

• Deep nwell Q collection  big Capacitance 
(>200 fF)  noise, power & crosstalk

• TowerJazz 180 process

• Pros:

• Full CMOS 

• Small capacitance (<10fF)  low noise, less 
crosstalk & low power.

• Thin detector possible.

• Cons:

• Limited depletion, long drift distance, low 
field region  radiation hardness TBD

I. Peric, DOI: 10.1016/j.nima.2007.07.115 
T. Kishishita, et al., DOI: 10.1088/1748-0221/10/03/C03047 
P. Rymaszewski, et al., DOI: 10.1088/1748-0221/11/02/C02045 
T. Hirono, et al., DOI: 10.1109/NSSMIC.2016.8069902 

R. Turchetta, et al., DOI: 10.1016/S0168-9002(00)00893-7 
W. Dulinski, et al., DOI: 10.1109/TNS.2004.832947 
A. Dorokhov , et al., DOI: 10.1016/j.nima.2010.12.112 
M. Havránek, et al., DOI: 10.1088/1748-0221/10/02/P02013
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TJ-Monopix development
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TJ 180nm: process modification

• A small electrode design:

– Small pixel size (< 50 µm2)

– Low capacitance (<3 fF)

– Low power

– Reduced digital-analog Xtalk

…

– … but suffers from limited radiation-hardness

Analog part Digital part

3
6

.4
 µ

m

MALTA

• Standard TJ 180 nm Process:

• High resistivity p-type epi layer (> 1kΩ.cm)

• Depleted region stays limited (in particular 
after irradiation)

• ALPIDE-like

• Modified TJ 180 nm Process:

• Additional n- implant  full depletion possible

• Keeps small capacitance & no big changes to 
electronic layout

• MALTA / MONOPIX
W. Snoeys et al. DOI: 10.1016/j.nima.2017.07.046 

 Requires process modification!
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TJ: The Digital Architectures

• 2 approaches have been followed:

– TJ-Malta1: 

• Asynchronous readout: high hit rate, fast signal response, very low power

•  Lead to TJ-Malta2 developments. 

– TJ-Monopix1:

• Synchronous readout (a la FE-I3 IC): column drain architecture, ToT measurement

Talk I. Tortajada, Oct 7th

This talk

TJ-MALTA1 

2×2 cm2 IC TJ-Monopix1 

1×2 cm2 IC
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Loss of efficiency in corners

The field configuration under the 
DPWell far from the collection electrode 
is the issue:

- Requires full depletion under DPW

- Need transversal field components in 
corners  proposition of extra 
process modification(s) 

- Operation at low threshold essential

Malta: 2×2 pixels, 36 

µm pitch, 250 e-

threshold, pre-irrad

Malta: 2×2 pixels, 36 

µm pitch, 350 e-

threshold, 1015 n.cm-2
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Process optimization for 
radiation hardness: MiniMALTA

• several possibilities found:

– Deep p well extra implant.

– Gap in n-type implant.

Change field configuration under DPW to 
“push” charges towards collection electrode 

Extra p-implant Gap in n-layer

M. Munker PIXEL 2018 / 10.1088/1748-0221/14/05/C05013

Talk I. Tortajada, Oct 7th
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TJ-Monopix1  TJ-Monopix2

• TJ-Monopix1:

– Fully functional, but efficiency drop after irradiation.

• TJ-Monopix2: 

– Full-scale small-collection diode with improved charge collection.

– Decrease minimal threshold.

• Joint TJ-Malta + TJ-Monopix submission!

• Design on-going, final verification on-going (1st mock layout already 
sent to founder…).

Efficiency unirradiated (17e-
ENC / 350 e- threshold): 97%

Efficiency 1015 n.cm-2: 70% 
(23 e- ENC / 570 e- thresh.)

Monopix1: 112col×224row
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TJ-Monopix2 sensor

Implant modification

Collection diode 

implementation
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TJ-Monopix2 FE

• Low threshold operation crucial!  New FE design for higher gain 
and less noise.

• Threshold adjustment on pixel level.

• New implant designs, reset optimization

Diode reset  increased 

input signal, TID

↑C  gain↑, ↓ENC / ↓σthr

↑L  gain↑, ↓ RTS noise

3-bit threshold tuning

Analog out

3-5× gain increase!

Power not compromised
Kostas Moustakas
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TJ-Monopix2 pixel

 Built as 2×2 core (area ↓)

 Readout Logic based on Column 
Drain architecture a la FE-I3

 7-bit BCID Time-Stamp

 Fast token: Internal token ring 
& group token

 Propagation delay reduced from 
>100 ns to 35 ns

 Does not impact readout speed 
(< 50 ns)

 Readout logic improvements to 
mitigate timing issues related to 
READ slope

 Hit delay through column for 
compensation of BCID 
propagation time

The TJ-Monopix2  2×2 pixel
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TJ-Monopix2 Chip Overview

 4 flavors: Normal, Cascode, HV, 
HV Cascode

 Modular 8-bit DAC, 32 column 
grouping for voltage drop 
compensation

 LVDS TX, RX designed for 5 Gbps

 Power:

 4 domains: Matrix Analog, Matrix 
Digital, DAC, Digital Periphery

 Matrix analog: ~90 mW.cm-2

 BCID distribution: ~80 mW.cm-2

 Periphery: ~ 60 mW
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 Submission TJ-MALTA2 + 
TJ-MONOPIX2 mid-October!

TJ-Monopix2 Chip Overview
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LF-Monopix development

1- Introduction

2- TJ 180 nm TJ-Monopix development

3- LF 150 nm LF-Monopix development

4- Conclusion
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LF DMAPS development line

• A large collection diode design:

– LF 150 nm process

– Multiple nested wells

– 6 metal layers + thick top

– Substrate resistivity > 2kΩ.cm

– Backside thinning and processing

• Several prototypes:

CCPD-LF (subm. 2014) LF-CPIX (subm. Feb.16)
LF-Monopix1 (subm. Aug.16)

- Pixel size: 33×125 µm2

- Chip size: 5×5 mm2

- Fast Readout with FE-I4

- Thickness: 750/300/100 µm

- Pixel size: 50×250 µm2

- Chip size: 10×10 mm2

- Fast Readout with FE-I4

- Thickness: 750/300/100 µm

- Pixel size: 50×250 µm2

- Chip size: 10×10 mm2

- Monolithic: Includes 
Column Drain Readout.

- Thickness: 750/300/100 µmM. Barbero et al. doi.org/10.1088/1748-0221/15/05/P05013
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Focus on LF-Monopix1 analog FE 
• The analog FE uses a Charge Sensitive Amplifier

• Gain independent of large Cdetector ? (~400 fF here!)

 Small Cf as G ~ 1/Cf (Cf ~ 5fF)
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• Need a large gm for these large CD!

• Threshold trimming a must (4 bits in-pixel)

Power: ~40 µW/pix 
in LF-Monopix1
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Focus on LF-Monopix1 digital FE 
• The digital FE is based on Column Drain Architecture 

• It provides 8-bit ToA and ToT

• Full custom design:

– to minimize area and Cdigital

– Low noise design for critical digital blocks

(e.g. current steering logic)
T. Wang, et al., DOI: 10.1088/1748-0221/12/01/C01039 
P. Rymaszewski et al., DOI: http://doi.org/10.22323/1.313.0045 v
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LF-Monopix1 performances
• High breakdown voltage >250 V

– Improved wrt previous designs

J. Liu, et al, DOI: 10.1088/1748-0221/12/11/C11013

I. Caicedo et. al, DOI: 10.1088/1748-0221/14/06/C06006 

• Moderate noise & gain degradation 
at 100 MRad:

– 15-25% ENC ↑ / < 5% gain ↓

I-V curves at room T

ENC vs TID

gain vs TID• High & uniform efficiency 
after 1015 n.cm-2

– Bias -130V, dry ice cooled

– Thres. ~1700 e-

– 0.2% masked pixels

Efficiency @ 1015 

n.cm-2 : 98.9%!

Pixel  corner 
efficiency : 98%

T. Hirono, et. al, DOI: 10.1016/j.nima.2018.10.059 
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LF-Monopix1  LF-Monopix2

• LF-Monopix1:

– Fully functional, high efficiency after 1015 n.cm-2.

– … but: found (small) crosstalk correlated to digital read signal  can generate 
spurious signals

– Issue understood

(layout)

• LF-Monopix2:

– Improved logic and layout (READ signal related  Xtalk reduction)

– BCID propagation better and better Column reading.

– Detector capacitance reduction (for better SNR)

– Lowering of pixel power consumption (preamp and comparator)

– Improved discriminator (faster, better match to 6-bit ToT)

 Submitted June 2020!

Analog Out (zoomed in)
Correlation to READ signal

Analog Out



Vertex 2020, Oct. 7th, Monopix DMAPS, Marlon Barbero 25

LF-Monopix2 sensor / pixel layout

LF-Monopix 1

LF-Monopix 2
M. Zhao
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LF-Monopix2: Analog FE

• Explores several CSA flavors:

• Try also lower Cf for higher CSA gain, mitigates discriminator dispersion

• Explores 2 discriminators:

– 1st: a la LF-Monopix1

– 2nd: Bring improvements to discriminator design for better timing

v
d
d
a

I F
B

vdda

Out
Vcasc

v
d
d
a

M1

M2

Cf

I F
B

Cc

-HV

vdda

OutSF

In

CSA 1 (a la LF-Monopix1) CSA 2 CSA 3
Folded cascode Telescopic cascode

SF in DC feedback loop
Open loop gain vs BW

SF in DC feedback loop
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READ crosstalk fixing

• Was related to the fact the token was cleared by the READ rising edge, 
which led to switching during READ…

• Change logic to clearing on READ falling edge.

• Solution makes longer read cycle, but avoids unnecessary digital 
switching during read…
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LF-Monopix2 Chip overview

Top pads:
Power / Sensor Bias / Some analog Voltage

Pixel array:
Pixel Size: 50×150 µm2

Pixel Matrix: 340×56 pixels
Variations in terms of CSA
Variations in terms of discriminator

End of Column:
Sense amplifiers
Digital buffers

Periphery circuitry:
Digital logic
DAC + Analog buffer for monitoring

Bottom pads

Submitted June 2020 
alongside test structures 
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LF-Monopix2 Chip overview

Submitted June 2020 
alongside test structures 
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Conclusion

1- Introduction

2- TJ 180 nm TJ-Monopix development

3- LF 150 nm LF-Monopix development
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The Monopix2 development

LF-Monopix2: 

2×1 cm2, 340×56 pixels, 50×150 µm2

Analog and digital FE improvements

Smaller pixels, better layout

Submitted in June 2020

 Back Dec. 2020

TJ-Monopix2: 

2×2 cm2, 512×512 pixels, 33×33 µm2

New implants for better charge 
collection after irrad, lower threshold

Submission foreseen October 2020

Radiation-hardness 

demonstrated at least 

up to 1015 n.cm-2 and 

100 MRads

Small pixels, low 

capacitance, low power 

design

• Out of ITk (challenging schedule)  interesting for post-ITk applications

… e+e- environments or future hh … Talk C. Gemme, Oct 6th
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Thanks
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IRFU CEA-Saclay: Y. Degerli, F .Guilloux, F.J. Iguaz, P. Schwemling


