First test results from the ITkPixV1 pixel readout chip

Vertex 2020 - 06.10.20

Timon Heim - LBNL
on behalf of RD53 Collaboration
and ITkPixV1 Testing Team
RD53 Collaboration

RD53: 22 collaborating institutes, around 20 active designers

<table>
<thead>
<tr>
<th></th>
<th>RD53</th>
<th>Current Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip Size</td>
<td>2x2 cm²</td>
<td>2x2 cm²</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>50x50 µm²</td>
<td>50x250 µm²</td>
</tr>
<tr>
<td>Pixel Hit Rate</td>
<td>3 GHz/cm²</td>
<td>400 MHz/cm²</td>
</tr>
<tr>
<td>Trigger rate</td>
<td>4/1 MHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Trigger Latency</td>
<td>12.8 µs/51.2 µs</td>
<td>6.4 µs</td>
</tr>
<tr>
<td>Current consumption</td>
<td><8 µA/pixel</td>
<td>20 µA/pixel</td>
</tr>
<tr>
<td>Radiation Tolerance</td>
<td>0.5 Grad</td>
<td>300 Mrad</td>
</tr>
<tr>
<td>Min. stable Threshold</td>
<td>600 e</td>
<td>1500 e</td>
</tr>
</tbody>
</table>

Requirements doc: https://cds.cern.ch/record/2663161

RD53 Collaboration in charge of:
- Characterization of 65nm technology in radiation environment
- Design of readout chip for the use in the ATLAS/CMS HL-LHC Pixel detectors
 - Analog front-end
 - Analog IPs (Bias DACs, monitoring ADC, CDR/PLL, high-speed serialiser, SLDO, References, …)
 - Digital logic (hit buffering, data compression, …)
- Initial end-goal was half-size demonstrator chip RD53A
- Was extended to design pre-production and production version of readout chips
RD53 Collaboration LOI
02/2013

RD53A chip submission
11/2017

RD53B design finished
11/2019

CROC submission
12/2020

RD53A (400x192)

FE65-P2 and CHIPIX prototype chips
12/2015

RD53A AFE review & design validation finished
12/2018

ITkPixV1 submission
03/2020

ITkPixV1 (400x384)

CROC (432x336)

2021

ITkPixV2 & CROCv2 submission

We are here

CHIPIX (64x64)
FE65-P2 (64x64)
RD53B:
- Virtual chip/Design Library
- Touched or improved nearly every piece of RD53A
- Will be assembled in two versions:
 - ATLAS ITkPixV1 (400x384 pixels)
 - Differential analog FE
 - CMS CROC (432x336 pixels)
 - Linear analog FE
- Digital RTL shared between both chips
- Same End-Of-Chip (analog and digital) for both chips
 - Same pad ring

RD53B Chip Manual: https://cds.cern.ch/record/2665301
Analog View

- Multiple analog blocks integrated in analog chip bottom
 - Most of them tested in-silicon in mini-ASICs before RD53B submission
 - Analog islands organized in 2x2 pixels

Digital View

- Organized in digital cores (8x8 pixels)
- Core is flat digital synthesized “sea”, with 16 analog islands integrated
- Stepped and repeated to create pixel matrix
 - Number of core columns/rows is changed to create ATLAS/CMS chip
 - Cores are interconnected for configuration and readout
Digital Core & Pixel Region Logic

Digital Core:
- Contains 16x Pixel Region Logic (1x4 pixels)
- Read out of hits along core column

Pixel Region Logic:
- Hits are saved as ToT (Time-over-Threshold) associated to a time stamp (bunch crossing)
- Each pixel has 8x 4-bit ToT memories
Serial Power

Serial powering enables large reduction in mass of services.

Linear Regulator Shunt Circuit Offset Circuit
ITkPixV1 on Single Chip Card

June 2020
BDAQ53:
- Custom base board with commercial FPGA plug-in
- Ethernet communication to PC
- Python based SW library
- Specifically targets chip characterization

YARR:
- Commercial PCIe FPGA board with custom FMC adapter card
- PCIe communication to PC
- C++ based SW library
- Hardware agnostic SW aimed at growing from chip characterization all the way to detector operation
Does it work?

• All measurements up to now indicate that **94% of the chip is working**!

• However the **6% manifested in a large current on the digital rail** (around 2A @ 1V, analog current was as expected) which initially gave us a headache

 • Not a simple short and independent of clock

 • Behavior consistent over all chips tested (~20), multiple test sites (Bonn, CERN, LBNL), and wafer batches (production batch was split in two by TSMC)

 • Thermal imaging did not reveal any smoking gun

 • Analysis of PCM (Process Control Monitoring) shows no anomalies

 • All of this **points to a design bug** (with some hindsight)

• Does **not prevent us from chip operation and testing**!

• Only prevents some high level system tests
Missing ToTs

Example result from an analog scan.

Hits with a ToT having more than one bit set ‘1’ are “lost”. ToT’s with two ‘1’s see around ~10-20% loss, ToT’s with three ‘1’s have more than 90% hit loss.
Multi-bit Latch

- Missing ToTs pointed in the direction of the ToT memories
- Made from multi-bit latches (custom) used for the first time in RD53B due to area congestion (RD53A used a standard latch)
- Discovered bug in multi-bit latch which allows direct path from VDDD to GND under specific circumstances, which also leads to some internal nodes not being on a well defined potential and appearing as flipped to ‘1’ bits on the output
- A ToT = ‘1111’ is the internal code for ‘no hit’ and will not be read out, which explains the hit loss we saw for specific ToT values when all bits appear flipped to ‘1’
- Each multi-bit latch could have a "leakage" of around 2uA when in this state, 1.2M of these (153k pixels * 8) result in a total current of 2.4A
- This was further confirmed by setting all ToT memories to ‘0000’ which results in no direct path from VDDD to GND
- In this state the digital current is as expected (200mA with no cores enabled, 600mA with all cores enabled)
Working with current ITkPixV1:
- Chip verification is proceeding, most blocks can be tested in this version albeit sometimes needing some work arounds
 - Analog front-end will be verified using the precision ToT feature
 - Setting all ToT memories to ‘0000’ sets the chip in normal current state
- Main issue: high power-up current makes it impossible to use this chip for system testing of serial power chains

Patch in metal Layer (ITkPixV1.1):
- 4 wafers are being held at TSMC before further processing (after poly)
- Found way to fix high digital current and hit-loss, by transforming the multi-bit latch into single-bit latch
 - Only requires change of two masks (M1 and VIA12)
 - Submitted this week
- ITk Pixel pre-production will rely on this chip

Towards CMS submission and ITkPixV2:
- Due to the high routing congestion multi-bit latch can not simply be replaced by single-bit latches
- A new multi-bit latch has been designed and verified, but the space saving is not as dramatic (only around 75% smaller than single-bit latches)
- Some triple redundancy in the pixel registers can be dropped to make space
- Work in progress
Shunt-LDO Regulator

- Once digital current reduced, **Shunt-LDO behaves as expected**
 - Note specific shunt configuration shown not final
 - Preliminary tests of over-voltage and under-shunt protection successful
• 160MHz clock recovered from custom DC balanced CMD protocol (160Mbps)
• 40MHz bunch crossing clock derived via special sync frames
• Internal PLL multiplies 160MHz up to 1280MHz clock which is used to drive the four 1.28Gbps data outputs
• Need very low jitter to drive signal through more than 6m low-mass cable and be received within margin
• First measurement with ITkPixV1 showing CDR working within requirements
• Huge improvement compared to RD53A
Global purpose LVDS outputs allow forwarding of CMD (to save on services).
Analog Circuits

Reference Voltage:
4% difference
over 120°C temperature range

Injection DAC linearity measurement.

Internal capacitance measurement circuit can determine injection capacitance and derive DAC to electron conversion:

<table>
<thead>
<tr>
<th>Chip</th>
<th>Cap [fF]</th>
<th>Cap Error [fF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10157</td>
<td>7.565</td>
<td>0.01</td>
</tr>
<tr>
<td>0x102b7</td>
<td>7.351</td>
<td>0.01</td>
</tr>
<tr>
<td>0x102a7</td>
<td>7.465</td>
<td>0.01</td>
</tr>
<tr>
<td>0x10165</td>
<td>7.379</td>
<td>0.01</td>
</tr>
<tr>
<td>0x10277</td>
<td>7.436</td>
<td>0.01</td>
</tr>
<tr>
<td>0x10297</td>
<td>7.522</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1 LSB = 5e
Precision ToT/ToA:

- Each core column has 4 precision ToT counters (640MHz) connected to HitOr bus
 - HitOr bus: OR of all pixel discriminators
- Does not use multi-bit latch as memory
- Only know column information
 - Can recover pixel position during scans by knowing injection configuration
- Also gives precision timing information (1.5625ns)
Digital and Analog Scans

All 153600 pixels responding 100%

pToT from digital scan

pToA from digital scan
At each step in the threshold scan, sample each pixel’s PToA and PToT to get a picture of the pulse shape.

- Creative use of PToT and PToA enables direct look at second stage amplifier output.
- In the past only possible via debug pads directly wired into the analog front-end.
- Will be used to make precision measurements of analog front-end.
Threshold Tuning

Untuned Threshold Distribution

TDAC distribution after tuning. Different LSB size for positive and negative TDACs

Simulation

Threshold vs. TDAC [+] at 27 C, OP#1

Timon Heim

Vertex 2020
Threshold/Noise Results

- Innermost layer settings (5.5uA analog per pixel)
- First results from tuning very promising
 - Very low noise (no sensor capacitance)
 - Good tuned threshold dispersion
 - Very homogenous maps
- Next: explore more analog front-end working points and measure performance with sensor
Self Trigger

- Uses HitOr bus to register pixel hits and issue trigger to itself
- Will be primarily used for source scans
- Tested with digital injection and working as expected
- Has additional functionality (using the 4 different HitOr busses) to trigger on specific cluster patterns
Probe Card:
- First version designed and produced
- Interface mimics Single Chip Card and integrates readily with test system
- Very large number of needles and very dense (200 needles over 2cm)
- Wafer probing system currently being commissioned
 - Will supply probed wafers for module flip chipping in coming months
Summary and Conclusion

- ITk Pixel pre-production chip ITkPixV1 was submitted in March 2020 by the RD53 Collaboration
- Wafers were delivered in June 2020 and upon first power-on we discovered an abnormally large digital current
 - Traced digital current back to bug in ToT memory, which also leads to hit loss
 - Bug prevents ITkPixV1 to be used for some important system testing
 - Developed a patch only changing two mask layers, to be submitted ITkPixV1.1 which will be used for pre-production and majority of testing
- ITkPixV1 testing progressing well and everything working well so far
- Big next steps in testing:
 - Analog front-end characterization, Xray irradiations, Sensors assemblies, system testing
 - Conclude chip verification in time for ITkPixV2 submission (ITk Pixel detector production chip)
Backup
RD53 Design Team

Collaboration board chair:
Lino Demaria, Torino

Interface to experiments: Co-spokespersons
Jørgen Christiansen, CERN (CMS), Maurice García-Sciveres, LBNL (ATLAS)
- General organization, Funding, Specifications,

Experiment observers
Duccio Abbaneo, CERN (CMS), Kevin Einsweiler, LBNL (ATLAS)

RD53 design framework for final pixel chips: Flavio Loddo, Bari; Deputy: Tomasz Hemperek, Bonn

Floorplan/integration:
Flavio Loddo, Bari
- Pixel array, Bump pad, EOC, Power distribution, Bias distribution, Analog/digital isolation, Integration, Verification

Analog FEs with biasing:
Luigi Gaioni, Bergamo;
Ennio Montelli, Torino;
Amanda Krieger, LBNL
- Specification/performance, Interface, Analog isolation, simulation model, Abstract, Integration, Verification

Digital integration:
Tomasz Hemperek, Bonn; Luca Pacher, Torino
- Simulation Framework:
 Sara Marconi, CERN;
 - Framework, hit generation, import MC, reference model / score board, Monitoring/Verification tools, Readout rate estimations, Behavioural pixel chip, SEU injection.
- Pixel array logic:
 Sara Marconi, CERN
 - FE interface, Latency buffer, Core/column bus
- Digital chip bottom:
 Roberto Beccherie, Pisa; Francesco Crescicioli, LPNHE;
 - Configuration, Control interface, Readout data format/protocol, Compression
- Verification:
 Sara Marconi, CERN; Attiq Rehman, Bergen;
 Joel De Witt, Santa Cruz
 Cesar Gonzales Renteria, LBNL
 PeiLan Liu, LBNL
 SEU: Pedro Leitao, CERN; Rafael Girona, Sevilla
 SET: Fernando Munoz Chavero, Sevilla
 LPGERT: Pedro Leitao, CERN
 Mixed signal: Luca Pacher, Torino;
 Alkaterini Papadopoulou, LBNL
 - Functional, SEU, Interfaces, specifications
- Library cells:
 DICE: Denis Fougeron, Mohsine Menouni, CPPM
 Timing characterization: Sandeep Miryala, FNL

Serial Power:
SLDO: Michael Karagounis, Andreas Stiller, Dortmund.
Bandgap: Gianluca Traversi,
- Verification: Alvaro Pradas, ITAINNOVA;
 Stella Orfanelli, CERN; Dominik Koukola, CERN
- Shunt-EDO integration, On-chip power distribution, Optimization for serial powering, System level power aspects, Power Verification

Design for testability:
Giuseppe De Robertis, Bari
- Scan path, BIST, production test patterns, Fault simulation, bump bonding testing

IPS: Support and possible updates
Current DAC: Bari
Voltage DAC: Prague
ADC, mux, temp: CPMM
Power on reset: Seville
Ring oscillator: LAL
Analog buffer: RAL

Support and services:
Tools, design kit: Wojciech Bialog, CERN
Repositories: Flavio Loddo, Bari; Luca Pacher, Torino; Tomasz Hemperek, Bonn
Radiation model: Mohsine Menouni, CPPM; CERN

PAD frame: Hans Krueger, Bonn
CDR/PLL: Piotr Rymaszewski, Bonn
High speed drv: Konstantinos
Moustakas, Tianyang Wang, Bonn
Diff. IO: Gianluca Traversi, Bergamo

Testing: Timon Heim, LBNL
YARR system: Timon Heim, LBNL
BBAQ53 system: Marco Vogt, Michael Daas, Yannik Dieter, Hans Krueger, Tomasz Hemperek, Mark Standte, Bonn
Radiation test: Luis Miguel Jara Casas, CERN, Mohsine Menouni, CPPM

Names in bold: Member of RD53 management board

Timon Heim
Differential Front-End

Charge Sensitive Amplifier:
- Straight cascode design
- Global settings for I_f (8bit DAC)
- No per pixel adjustment
- Selectable gain

Two Stage Comparator:
- Differential design
- Global 8bit threshold DAC
- Two per pixel 4bit threshold DACs
- Optimised for low threshold operation
Multi-bit Latch
EN=1, D=0010->0011
How did the Bug make it into the Final Design?

- Multi-bit latch was designed during RD53A design stage as a potential alternative to single-bit latches to improve routing congestion (multi-bit latch is 50% smaller)
- It was not used for RD53A yet it remained in the design library
- Designer of latch left RD53 collaboration after submitting the design and it was assumed that the design was finished and fully verified (it was not)
- The latch was then used in RD53B to reduce congestion in digital core
- The specialized commercial tool used to build the electrical model, extracting timing, power, and signal integrity values from the physics design of digital cells did not detect that the multi-bit latch had pattern dependent issues
- A more recent version of the same tool now reports a problem
Working around the Bug

- ToT memories do not have a reset (it would be an SEU vulnerability) and are in a random state after power-on, hence most are in a state where they allow current to flow from VDDD to GND.

- The current path can be broken by setting ToT memories to ‘0000’.

- Can be achieved by quickly injecting a very short digital pulse very frequently to overwrite all memories.

After setting all ToT memories to ‘0000’ we see the **expected digital current of 600mA** (with all cores enabled). This allows testing all features without influence from current!

(Aalog current is as expected, 700mA after configuration)