MuPix10: First Results from the Final Design

Heiko Augustin on behalf of the Mu3e pixel team Physikalisches Institut Heidelberg

Vertex2020

07.10.2020

Mu3e

- Backgrounds

 V

 e

 Backgrounds
- Internal Conversion Accidental

- Search for the cLFV decay $\mu^+ \rightarrow e^+e^-e^+$ (vSM: BR < 10-54)
- Current limit (SINDRUM)
 BR < 10⁻¹² @ 90% CL
- Sensitivity goal:
 1 in 10¹⁶ decays
- Up to 109 decays per second
- Suppress background below sensitivity level

The Mu3e Detector

- 108-109 decays per second
- $p_{max} = m_{\mu}/2 = 53 \text{ MeV}$
- → Multiple Coulomb Scattering
- Good vertex and time resolution (100 µm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
- → Online reconstruction and selection

The Mu3e Detector

Pixel detector requirements:

Pixel Size	Time Resolution	Material Budget	Efficiency
80 x 80 μm ²	< 20 ns	0.1% X _o /layer	> 99 %

Mu3e TDR [arXiv:2009.11690]

- 108-109 decays per second
- $p_{max} = m_u/2 = 53 \text{ MeV}$
- → Multiple Coulomb Scattering
- Good vertex and time resolution (100 μm & 500 ps)
- Good momentum resolution (0.5 MeV)
- Continuous Beam! No trigger!
- → Online reconstruction and selection

High Voltage - Monolitic Active Pixel Sensors

- Low ohmic substrates (10-200 Ωcm)
- High voltage > 100V
- Deep N-well diode
- ~ 30 μm depletion
- Charge collection via drift

- In-pixel electronics
- Monolithic design: Detection and Readout combined in one chip
- Commercially available processes: AMS 180nm (6M) TSI 180nm (7M)
- Chips are thinned to 50 µm

MuPix History

- Small prototype development culminates in MuPix7
- Scaling successful with MuPix8
- Foundry change necessary after MuPix9
- New foundry TSI with same base process (IBM 180nm)
- Large scale prototype MuPix10 and ATLASPix3 successfully produced with TSI

MuPix Architecture

- Clear separation of analog and digital electronics
- 2 comparator design
- Tuning and masking available
- Priority encoder / column-drain readout
- Chip sub-dived into 3 matrices → 1 Data link each + 1 multiplexed link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout state machine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by inpixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

Latest Results - MuPix8

14 ns

6.5 ns

A MuPix Module

- Chips glued and SpTAB-bonded to flexprint
- No additional components!
- → 1.15‰ X₀ per layer
- Minimize dead space between the chips
- → Only 11 µm dead silicon outside the guardring
- Power consumption limited to 400 mW/cm² (Sensors+Flex)

The Flexprint Environment

- 2 layer aluminum polyimide flexprint (LTU)
- Provides:
 Power & HV
 Differential Signal I/O
- Only 1 supply voltage, but no LDO-regulators!
- Minimise I/O
- Flex design rules define PadOut

MuPix10 Design

- Module ready!
- → Pad Out compatible with flex
- → Chip size defined by mechanics
- Complete on-chip biasing:
- → triple redundant memory
- → bias and voltage DACs
- 1.2V voltage regulator
- MuPix10 can be used for Module production

The MuPix10

Pixel size [μm²]	80 x 80	
Sensor size [mm ²]	20.66 x 23.18	
Active size [mm ²]	20.48 x 20.0	
Pixel matrix	256 x 250	
Thickness [µm]	50	
Substrate [Ωcm]	200-400	
Data links	3+1	
Data speed [Gbit/s]	1.25	
Time-of-arrival [bits]	11	
ToT [bits]	5	
TS binning [ns]	8 (option for 1.6)	

MuPix10 timeline

- December 2019: Submission to TSI
- March 2020: Wafer delivery Send for post-processing
- March → May 2020: Lock down in France and Germany
- Mid of May 2020: Receive first chips

In-house Picking

- Diced Wafers delivered on tape (Company OPTIM)
- Equipment:

 Vaccum chuck
 Vaccum pick-up tool
 Patience
- 3 thicknesses:625, 100 and 50 um
- Picking yield very high: >98%
- Effect on "electrical yield"?
- → detailed study with probe card is pending

Commissioning & First results

- In the Lab: Commissioning and Optimisation with Injection or Sr90 and Fe55
- → Breakdown @ -100V→ 30-40um depletion
- Testbeam: DESY 3 GeV e-PSI 350 MeV π +, μ +,e+(,p+)
- → MuPix10 works nicely

Hitmap DESY testbeam

MuPix Telescope

- Co-Development of the DAQ
- Most common setup:
 4 sensor layer (1 DUT)
 coincidence of scintillating tiles
- Evolution of reference plains: Mupix6, MuPix7, MuPix8, ATLASPix1, ATLASPix3 and now MuPix10
- MuPix10 telescope used!

- Usage of the individual tuning and masking bits
- S-curve based tuning approach
- Data: Injection of ~3000 e- (fixed) Threshold scanned
- Threshold dispersion:
 Untuned RMS ~240 e Tuned RMS ~ 75 e-

- Usage of the individual tuning and masking bits
- S-curve based tuning approach
- Data: Injection of ~3000 e- (fixed) Threshold scanned
- Threshold dispersion:
 Untuned RMS ~240 e Tuned RMS ~ 75 e-

- Usage of the individual tuning and masking bits
- S-curve based tuning approach
- Data: Injection of ~3000 e- (fixed) Threshold scanned
- Threshold dispersion:
 Untuned RMS ~240 e⁻
 Tuned RMS ~ 75 e⁻

- Usage of the individual tuning and masking bits
- S-curve based tuning approach
- Data: Injection of ~3000 e- (fixed) Threshold scanned
- Threshold dispersion:
 Untuned RMS ~240 e Tuned RMS ~ 75 e-
- Masking works nicely too

Vssa-Regulator

- Integral for module functionality with a single supply voltage
- No detailed study yet
 - Dive into the cold water: the regulator works nicely
 - Even colder water: MuPix10 was operated successfully with a single supply voltage
- Power consumption: ~ 220mW/cm²

ToT sampling

- ToT correction desired for offline data analysis
- Not foreseen on MuPix8
 - → possible readout problem
 - → ToT not fully sampled
- Easy Solution:
 Wait for the pulse to end
 - → scrambles the chronology of the data
- Additional complexity for the online sorting
- Better: delay every hit by a constant time
 - → Chronology conserved

- **Analogue Delay** Designed by Alena Weber(KIT)
- Contained in each digital pixel cell
- Delay programmable
- Delay measurable as maximum ToT
- Further idea: Hits with large ToTs do not gain from ToT correction
- Limit the maximum ToT
- More precision for low energy depositions
- Works nicely!!

Signal Line Crosstalk - MuPix8

- Point-to-point connection
- Capacitive coupling to neighbouring lines (increases with lenght)
- Crosstalk can induce additional hits
- → Not easily distinguishable from charge sharing
- Additional Readout load

Signal Line Crosstalk - MuPix8

Triple Crosstalk: hit induced in both neighbouring lines

Crosstalk Extrapolation for MuPix10

Triple Crosstalk probability

- Using the same routing density and scheme
- → Almost 48% crosstalk probablility for the longest line
- → Penalty for high row addresses
- → Routing needs to adapt

Routing Optimisation - MuPix10

- Equalize but reduce crosstalk
 → miminise the length that two lines are
 neighbouring
 (¼ of total length possible)
- → ~12% triple crosstalk expected
- Make Crosstalk easily detectable
 → neigbouring signal lines are not neigbouring pixels

Routing Optimisation - MuPix10

- Equalize but reduce crosstalk
 → miminise the length that two line are
 neighbouring
 (¼ of total length, 2cm)
- → ~12% triple crosstalk expected
- Make Crosstalk easily detectable
 → neigbouring signal lines are not neigbouring pixels
- Crosstalk can be removed, possibly already during the data taking
- Even more improvement expected for MuPix11

Summary

- MuPix10 is working nicely!
- → Full-scale
- Module ready
- New features implemented successfully
- → Delay circuit, routing
- Final Submission:
 MuPix11 Summer 2021

Mu3e Status

 Mu3e Magnet arrived at PSI and is currently cooling down

 Helium cooling system and tests are nicely progressing (Silicon Heater mock-up)

 Hardware of the readout chain available and heavily tested

End of the year plans

- Long beam time @PSI
- Tests within the magnet
- All sub-systems: Pixel, Tile and Fibre
- Check of important paths of the readout chain
- First 6 chip module (not on flexprint)

