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The High Luminosity LHC

● LHC accelerator periodically upgraded to keep exploring the energy frontier...
● The “HL-LHC” period will start in ~2027 with 5-7.5 times the nominal luminosity
● This will increase the pile up from current µ=30 to µ=200
● Need to upgrade ATLAS experiment to deal with more radiation damage, more 

“messy” events... 
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The High Luminosity LHC

 Simulation of µ=200

● At HL-LHC: average 1.6 collisions/mm. Pile-up 
can add jets, create spurious jets, alter the 
properties of hard scattered jets: degrading 
physics performance

● The ITk tracker mostly mitigates the effect 
of pile-up, but still challenging in the 
forward region 

● Timing information (~30 ps) can be 
used to mitigate the effect of pile-up

1 mm

See C. Gemme talk on this 
conference
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High Granularity Timing Detector

HGTD designed to improve ATLAS 
performance in the forward region 
in view of increased pile up in the 
HL-LHC

● Located between barrel and end-
cap calorimeters (|z|=3.5 m)

● Silicon detector modules mounted 
on disks

● Two sensor layers/disk
● Two disks/side
● Active area: 12 cm < r < 64 cm

● 2.4 <|η|< 4.0 

Target time resolution: 
30-50 ps/track up to 4000/fb 

Material from HGTD TDR ATLAS-TDR-031
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Impact of HGTD

Material from HGTD TDR ATLAS-TDR-031

Example, two “straight forward”  
improvements with HGTD

● PU jets identified by looking at the 
tracks associated to a jet 

● HGTD can help identifying PU 
tracks, specially at large η 

Pile up rejection

Electron isolation efficiency

● PU tracks can cause electrons to 
fail isolation requirements 

● HGTD can help maintain high 
efficiency, specially at high pile up



Maximum fluence: 
2.5E15 1MeV n

eq
/cm2 

and 2MGy at the end 
of HL-LHC (4000/fb) 6S. Grinstein, Vertex 2020

HGTD Radiation Hardness
● The strategy to cope with the high radiation environment is to segment 

the detector into replaceable rings

FLUKA 
simulation 

● Inner ring (12-23 cm) replaced every 1000/fb 
● Middle ring (23-47 cm) replaced every 2000/fb 
● Outer ring (47-64 cm) never replaced 

HGTD TDR: ATLAS-TDR-031
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HGTD Module
● HGTD Module

● Sensor: 15x30 pads of 1.3 x 1.3 mm2

● Bump-bonded to two readout chips
● Flex-PCB glued on top 
● Flexible tail to outer radius electronics 

● Modules on both sides of 
layer

● Overlap decreases with 
radius to maintain 
average Nhits per track 2≳  

8032 total modules
3.6 M channels, 6.4 m2

HGTD TDR: ATLAS-TDR-031
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 Sensor Technology
● HGTD needs to achieve time resolution <70 ps/

mip/sensor: beyond standard HEP silicon 
devices

Jitter            Timewalk           
                                              

Time resolution:

● Need fast signal and excellent S/N
● A multiplication layer increases signal slope
● Timewalk contribution can be corrected  

● Thin sensors (50 μm) further reduce intrinsic Landau 
contribution to resolution

[1] G. Pellegrini et al., NIM A765 (2014) 12
[2] H.-W. Sadrozinski et al., arXiv: 1704.08666
[3] F. Cenna et al, NIM A796 (2015) 149-153

Gain = 10

Weightfield 2 Simulation [3]

Low Gain Avalanche Detector (LGAD)
● n on p sensor with p-type mult. layer
● Low gain (G~10): improve signal slope but 

control noise
● Developed at CNM (Barcelona) [1]
● Proposed for timing by UCSC/Torino [2]

Main requirements after 2.5E15neq/cm2
● Good and uniform electrical behaviour (IV)
● 4fC collected charge (for front-end functionality)
● Time resolution better than 70 ps (~50 ps/track)
● High hit reconstruction efficiency 
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 Sensor Lab Measurements
● Single diodes (CNM, FBK, HPK, NDL...) 

extensively studied *
● HGTD sensors will have 15x30 pads
● Need to understand the electrical 

performance of large sensors
● First full sized (15x15) sensors produced
● Probe-card developed to study IV of pads
● Preliminary measurements indicate a 

reasonable yield is achievable 

* see for example:
   [1] HGTD TDR: ATLAS-TDR-031
   [2] N. Cartiglia et al., NIM A850 (2017) 83,
   [3] J. Lange et al., JINST 12 (2017) P05003
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 Sensor Lab Measurements

● Use electrons from 
Sr-90 source

● Control environment 
in climate chamber

● Record wave-forms 
to perform analysis

Obtain 
charge by 
integrating  
wave-forms

LGAD sensors from a variety of vendors satisfy collected 
charge requirement after irradiation to 2.5E15 neq/cm2

HGTD TDR: ATLAS-TDR-031

After irradiation 
gain layer 
degradation 
(acceptor removal 
on p mult. layer)

Other LGAD approaches see: 
Esteban Curras Rivera (later in 
this session)
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 Sensor Lab Measurements

● Use electrons from 
Sr-90 source

● Control environment 
in climate chamber

● Record wave-forms 
to perform analysis

Obtain time 
resolution from 
Δt(LGAD-ref) 
measurements

LGAD sensors from a variety of vendors satisfy time 
resolution requirement after irradiation to 2.5E15 neq/cm2
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 Sensor Testbeam Measurements 
● Use high energy pion/electron 

beams (CERN/DESY)
● Telescope planes to provide 

track reconstruction
● Record wave-forms to perform 

analysis
● Tested single diodes and 2x2 

arrays

LGAD sensors provide high hit reconstruction efficiency* in 
central pad region after irradiation to 3.0E15 neq/cm2

* and excellent timing resolution

HGTD TDR: ATLAS-TDR-031
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HGTD Front End Chip: ALTIROC 

● TSMC CMOS 130nm technology
● 15x15 readout channels 
● Pre-amplifier followed by TOA and TOT (for 

time-walk correction)
● Prototypes produced and tested: 

2x2 (ALTIROC0) and 5x5 (ALTIROC1)

ALTIROC1 with 4pF input capacitance can 
achieve ~25ps jitter at 4fC input charge

HGTD TDR: ATLAS-TDR-031
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Hybridization Process
● LGAD sensor and ALTIROC hybridization through bump-bonding
● Simpler than “pixel detector” process due to larger pads 

● Larger UBM pads, larger solder balls
● Same basic process:

● Under bump metalization of both ASIC and sensor
● Solder bump deposition on ASIC
● Flip-chip

QC with
X-ray 
inspection

80 um Ø dump 
connection

1.3 x 1.3 mm2 pad

● Produced 5x5 ALTIROC1 samples and 
15x15 dummies

● Shear and pull forces: >1kgf, >100gf
● Reliable baseline hybridization process 

HGTD TDR: ATLAS-TDR-031

5x5 ALTIROC1 devices
with HPK and CNM 
sensors
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First ALTIROC1 Module Testing

● Testbeam measurements with 
electrons at DESY  

● Unirradiated ALTIROC1 modules

● TOA corrected for time-walk

● Estimated resolution about 46 ps (after 
subtracting time-walk contribution) 

● Including Landau contribution (~25ps)
● Estimated jitter contribution about 39ps

● Somehow higher than target, but 
improved DAQ (FPGA) reduced 
contribution by 35%, achieving 
~25ps target 

HGTD TDR: ATLAS-TDR-031
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Summary
● The HL-LHC presents unprecedented challenges, timing information 

expected to play a key role to mitigate the impact of pile-up 

● The ATLAS High Granularity Timing Detector will use the LGAD 
technology to improve the ATLAS performance in the forward region  

● The HGTD is optimized to reach a per-track resolution of about 30-50 ps 
up to the end of the lifetime of the detector 

● Sensors and ASICs are being tested, and have shown to be able to 
reach the required performance 

● The HGTD Technical Design Report has been approved in Sept 2020 
● CERN-LHCC-2020-007; ATLAS-TDR-031 

https://cds.cern.ch/record/2719855

● Still, challenging times ahead...

https://cds.cern.ch/record/2719855


17

Back Up Slides


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17

