

Investigation of nitrogen enriched silicon detectors

Marta Baselga¹, Matteo Centis Vignali², Alexander Dierlamm³, Eckhart Fretwurst⁴, **Jan Cedric Hoenig**⁵, Pawel Kaminski⁶, Michael Moll², Giulio Pellegrini⁷, Joan Marc Rafi⁷, Riccardo Mori⁵,

Joern Schwandt⁴, Liv Wiik-Fuchs⁵

- 1. DESY, Hamburg (Germany); 2. CERN, Geneva (Switzerland); 3. KIT, Karlsruhe (Germany); 4. University of Hamburg, Hamburg (Germany);
- 5. University of Freiburg, Freiburg (Germany); 6. Institute of Electronic Materials Technology, Warszawa, 7. IMB-CNM-CSIC, Barcelona (Spain)

Nitrogen doping - effect on silicon

- (1) $I + V \leftrightarrow 0$ N_i =single interstitial nitrogen
- (2) $2N_i \leftrightarrow N_2$ N_s =substitutional nitrogen
- $(3) N_S + N_i \leftrightarrow N_2 V$
- (4) $N_2 + V \leftrightarrow N_2 V$
- $(5) N_2V + I \leftrightarrow N_2$

Nitrogen enrichment replaces some of these defects with more stable defects.

Samples and irradiation

Wafers	Label	Substrate	Туре	Resistivity [Ω·cm]
1-6	FZ	Floatzone	n-type	2000-2400
7-12	NIT	FZ Nitrogenated	n-type	1500-1900
13-18	DOFZ	FZ Oxygenated	n-type	2000-2400
19-24	MCZ	Magnetic Czochralski	n-type	800-1000

Irradiation performed at:

Ljubljana reactor neutrons KIT 25 MeV protons

CERN 24 GeV/c protons

Sensor fluences:

 $1 \cdot 10^{14} n_{eq}/cm^2$, $3 \cdot 10^{14} n_{eq}/cm^2$, $6 \cdot 10^{14} n_{eq}/cm^2$, $1 \cdot 10^{15} n_{eq}/cm^2$.

RESULIS

Nitrogen concentration measurements

- Samples are measured using the secondaryion mass spectrometry (SIMS) technique to determine nitrogen concentration, before and after processing.
- Wafer processing lowers nitrogen content to or below detection limit.

Field configuration

Results obtained from laser measurements with a laser illuminating the sensor edge (EdgeTCT).

Plots show E-field calculated at 40 V bias voltage. NIT and DOFZ show similar behaviour, while FZ E-field is growing almost exclusively back to front.

Strip sensor irradiated to $10^{14}~n_{eq}/cm^2$ with protons (CERN 24 GeV/c) measured @ -20 $^{\rm o}$ C .

This effect was not present under irradiation with neutrons! NIT and DOFZ behave similarly across the measurements.

Much more to see ...

