Investigation of nitrogen enriched silicon detectors

Marta Baselga1, Matteo Centis Vignali2, Alexander Dierlamm3, Eckhart Fretwurst4, Jan Cedric Hoenig5, Pawel Kaminski6, Michael Moll2, Giulio Pellegrini7, Joan Marc Rafi7, Riccardo Mori5,

Joern Schwandt4, Liv Wiik-Fuchs5

1. DESY, Hamburg (Germany); 2. CERN, Geneva (Switzerland); 3. KIT, Karlsruhe (Germany); 4. University of Hamburg, Hamburg (Germany); 5. University of Freiburg, Freiburg (Germany); 6. Institute of Electronic Materials Technology, Warszawa, 7. IMB-CNM-CSIC, Barcelona (Spain)
Nitrogen doping - effect on silicon

\[I + V \leftrightarrow 0 \]
\[2N_i \leftrightarrow N_2 \]
\[N_s + N_i \leftrightarrow N_2V \]
\[N_2 + V \leftrightarrow N_2V \]
\[N_2V + I \leftrightarrow N_2 \]

During crystal growth imperfections and defects are formed within the silicon wafer. Nitrogen enrichment replaces some of these defects with more stable defects.

M. Kwestarz, RD50 Workshop, November 2014
Samples and irradiation

<table>
<thead>
<tr>
<th>Wafers</th>
<th>Label</th>
<th>Substrate</th>
<th>Type</th>
<th>Resistivity [Ω·cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>FZ</td>
<td>Floatzone</td>
<td>n-type</td>
<td>2000-2400</td>
</tr>
<tr>
<td>7-12</td>
<td>NIT</td>
<td>FZ Nitrogenated</td>
<td>n-type</td>
<td>1500-1900</td>
</tr>
<tr>
<td>13-18</td>
<td>DOFZ</td>
<td>FZ Oxygenated</td>
<td>n-type</td>
<td>2000-2400</td>
</tr>
<tr>
<td>19-24</td>
<td>MCZ</td>
<td>Magnetic Czochralski</td>
<td>n-type</td>
<td>800-1000</td>
</tr>
</tbody>
</table>

Irradiation performed at:
- Ljubljana reactor neutrons
- KIT 25 MeV protons
- CERN 24 GeV/c protons

Sensor fluences:
- $1 \cdot 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$
- $3 \cdot 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$
- $6 \cdot 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$
- $1 \cdot 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$.
RESULTS
Nitrogen concentration measurements

- Samples are measured using the secondary-ion mass spectrometry (SIMS) technique to determine nitrogen concentration, before and after processing.
- Wafer processing lowers nitrogen content to or below detection limit.
Field configuration

Results obtained from laser measurements with a laser illuminating the sensor edge (EdgeTCT).

Plots show E-field calculated at 40 V bias voltage. NIT and DOFZ show similar behaviour, while FZ E-field is growing almost exclusively back to front.

Strip sensor irradiated to 10^{14} n$_{eq}$/cm2 with protons (CERN 24 GeV/c) measured @ -20 °C.

This effect was not present under irradiation with neutrons! NIT and DOFZ behave similarly across the measurements.
Much more to see …

Source measurements

TSC measurements

Electrical testing

Investigation of nitrogen enriched silicon detectors

Laser measurements