



## Effect of thermal donors induced in bulk and variation in p-stop dose on the no-gain distance measurements of LGADs

- Shudhashil Bharthuar

on behalf of the CMS collaboration

#### **Motivation**



## Samples measured: FBK UFSD3.1 2x2 sensors

- Sensors with 11 different interpad termination strategies
- Identical gain layer dose : equivalent to FBK scale factor - 1.02
- Samples from 3 wafers:
- W13, W14 and W18 with 3 different p-stop dose such that :

p-stop dose W13 < p-stop dose W14 < p-stop dose W18

- Objective behind this production :

Optimise the interplay between the no-gain region width and the p-stop doping dose



| Туре | Nominal<br>width [μm] | Inter-pad<br>design  | Strategy   |  |  |  |  |
|------|-----------------------|----------------------|------------|--|--|--|--|
| 1    | 16                    | grid + extra grid    | Aggressive |  |  |  |  |
| 2    | 21                    | grid                 | Medium     |  |  |  |  |
| 3    | 21                    | grid                 |            |  |  |  |  |
| 4    | 24                    | grid                 |            |  |  |  |  |
| 5    | 25                    | grid                 |            |  |  |  |  |
| 6    | 28                    | grid + extra grid    | Safe       |  |  |  |  |
| 7    | 28                    | grid + extra grid    |            |  |  |  |  |
| 8    | 28                    | grid + extra grid    |            |  |  |  |  |
| 9    | 38                    | 2 p-stop             | Super safe |  |  |  |  |
| 10   | 49                    | 2 p-stop + bias grid |            |  |  |  |  |
| 11   | 21                    | grid                 | Medium     |  |  |  |  |

#### IV measurements:

Breakdown voltage for sensors with varying nominal no-gain distance strategies:

- For supersafe sensors: breakdown voltage does not depend on p-stop dose and electrical configuration of the pads.
- The inter-pad configuration does not affect the break-down voltage at low p-stop doses
- At increasing p-stop doses, the inter-pad terminal strategy affects the electrical behaviour of the sensor.
- Aggressive configuration: the p-stop dose plays a role in the breakdown voltage; even when the remaining pads are grounded.
- Note: the ETL plan is to use the conservative designs with larger interpad gaps, where the breakdown voltage is robust even with missing bump bonds.



#### **CV** measurements:

#### V vs 1/C<sup>2</sup> plots for sensors from W13, W14 and W18:

Measured at 1 kHz.



- Uncertainties observed in the measured capacitance values for W13 and W14 sensors until the gain layer is depleted completely ---> shift in the capacitance value changes the slope in extrapolation of gain-layer depletion voltage as well as full-depletion voltage of the bulk (by ± 2V) -----> uncertainties in capacitance values measured for the sensors depends on the 'type' of the sensor.
- No such anomaly is observed when the gain layer begins to deplete for sensors from W18.

• UFSD3.1 : bulk is intrinsic (almost); very slightly p doped In processing: due to thermal donors a small n<sup>+</sup> doping layer is created. So the bulk for UFSD3 & UFSD3.1 sensors from W13 and W14 is n<sup>+</sup>.

Therefore, depletion starts from the bottom. As a result of which CV is different.

- Sort of 'space charge inversion' ----> polarity of bias does not change
- Since depletion begins from bottom -----> no interpad isolation. So active
  area is dependent on the nominal interpad-gap value and majorly on the area
  outside the sensor ----> both affecting the capacitance measurements.



Note: thermal donors in the bulk is an anomaly of this production due to unusually high purity silicon and not the nominal design.

CMS Phase-2 Preliminary

FBK UFSD-3.1 Wafer 13 sensors - V vs 1/C2 Plot (1kHz) 1022 \*-- Type 2 Capacitance-2 [F-2 00 00 00 00 00 00 00 00 00 Type 3 ▼-Tvpe 4 Type 5 -Type 7 -Type 8 Full Depletion Voltage (V<sub>ED</sub>)= 27 V Type 9 Possible explanation for $\dot{ec{1}}$ shift in CV while the gain laver is depleting 120 140

Observed as a significant shift in doping profile and is strongly dependent on the nominal interpad value!



#### Type-6 (measured also for Type 9 & 10 - shown in back up slides)

- Offset observed in Measured no-gain distance and nominal interpad-gap value:
  - ---->  $10.65 \pm 2.20 \ \mu m$  for W13 sensors
  - ---->  $6.27 \pm 1.10 \,\mu m$  for W18 sensors
- Difference in measured no-gain distance between W13 and W18 :  $\sim$  3-7  $\mu$ m (with measured distance for W13 at a higher value)

Interpad profiles for : Nominal value - 28 µm

#### W13/W14 sensors (suspected n- bulk due to thermal donors) and W18 (p+ implant in p-bulk)

#### CMS Phase-2 Preliminary



#### CMS Phase-2 Preliminary



#### CMS Phase-2 Preliminary



#### CMS Phase-2 Preliminary



- Voltage scans show at RT (at same laser intensity): behaviour is identical for sensors from W13 and W18. However, at 248K (-25°C) ----> the voltage scan plot for W13 gets steeper and Collected charge at 300V is ~2-3 higher for W13 sensors.
- With variation in temperature from 25°C to -25°C, The change in the measured no-gain distance decreases with an increase in the nominal interpad value.
- Change in the measured no-gain distance with decreasing temperature is slightly higher for W13 sensors ----> even though the fill factor does not vary significantly with change in temperature for both W13 and W14 sensors.

#### CMS Phase-2 Preliminary



Note: Uncertainties are statistical only. The bias voltage is changed to keep the collected charge constant for measurements taken at different temperatures.

#### Voltage scan comparison at different temperatures for W13 and W18 sensors CMS Phase-2 Preliminary

---- W18 Temperature: 25°C

charge [Arb. t

W18 Temperature: 10°C -- W18 Temperature: 0°C

W18 Temperature: -10°C

W18 Temperature: -25°C W13 Temperature: 25°C

W13 Temperature: 10°C W13 Temperature: 0°C

W13 Temperature: -10°C

-Shudhashil Bharthuar

Voltage Scan for FBK UFSD3.1 -Type 6-Safe CMS 2x2 Sensor IR

#### The 29th International Workshop on Vertex Detectors (Virtual) - October 5-8, 2020

## Thank you!

#### **Summary**

- Decrease in the p-stop dose improves the breakdown behaviour of the sensors; independent of the interpad termination strategy ----> observed in IV measurements
- Uncertainties in capacitance values, until the depletion of the gain layer, is observed for sensors with thermal donors induced in the bulk. As a result of this space charge inversion of the bulk, the active cross-sectional area, majorly the area lying outside the sensors, affects the C-V measurements.
- Scanning TCT measurements performed with IR laser show no significant difference in the charge collection values when measured at RT.
- At lower temperatures: the voltage scan curves gets steeper for sensors with thermal donors induced in the bulk ---> collected charge increases by a value of ~2-3 @ high voltages (close to BDV)
- Decrease in the measured no-gain distance is slightly higher for sensors with thermal donors induced in the bulk (as well as measured value at a given temperature is higher in comparison to those without thermal donors in the bulk) ---> The % decrease does not affect the change in Fill factor significantly with variation in temperature.

## Back-up Slides

#### Doping profile extraction from CV measurements : on W18 - as expected

No significant Shift in the depth of the gain-layer as well as of the thickness of the bulk for sensors without any thermal donors induced in the bulk.

Doping concentration, 
$$n(x) = -\frac{C^3}{q\varepsilon_{Si}A^2} \left(\frac{dC}{dV}\right)^{-1} = -\frac{2}{q\varepsilon_{Si}A^2} \left(\frac{d\sqrt[4]{C^2}}{dV}\right)^{-1}$$

#### Note:

In the doping profile extraction we consider the active cross-sectional area of each pad as a constant value ~ 1.3 x 1.3 mm<sup>2</sup>

#### **CMS** Phase-2 Preliminary



#### CMS Phase-2 Preliminary



TCT scans: comparison study of Type 6, 9 and 10 sensors from W13 and W18 sensors.

\* Based on: Voltage scans + interpad profiles (with varying temperature @ 285V, 295V and 300V for Type-6, Type-10 and Type-9 sensors, respectively)

#### Focus Scan- FBK UFSD3.1 W13 type-6 (Safe)

CMS Phase-2 Preliminary



CMS Phase-2 Preliminary



Measured with IR laser: low laser intensity (62.5 %, 1kHz) - equivalent to 5 MIPs

- Size of gaussian spot 10 μm
- Focused optical positioning 950 μm

#### Type-9

#### Interpad profiles for :

W13/W14 sensors (suspected n- bulk due to thermal donors) and W18 (p<sup>+</sup> implant in p-bulk)

#### CMS Phase-2 Preliminary



#### CMS Phase-2 Preliminary



## Voltage scan comparison at different temperatures for W13 and W18 sensors

CMS Phase-2 Preliminary



The 29th International Workshop on Vertex Detectors (Virtual) - October 5-8, 2020

-Shudhashil Bharthuar



#### Interpad profiles for :

W13/W14 sensors (suspected n- bulk due to thermal donors) and W18 (p<sup>+</sup> implant in p-bulk)

CMS Phase-2 Preliminary Interpad-gap for FBK UFSD3.1 W13-Type 10-Supersafe CMS 2x2 Sensor @295VIR laser Temperature: 25 °C; no-gain distance: (60.90  $\pm$  0.09)  $\mu$ m -Temperature: 10°C; no-gain distance: (59.59 ± 0.80) μm) Temperature: 0  $^{\circ}$ C; no-gain distance: (56.22  $\pm$  0.43)  $\mu$ m charge [Arb. units] Temperature: -10°C; no-gain distance: (55.27  $\pm$  0.13)  $\mu$ m Temperature: -25 $^{\circ}$ C; no-gain distance: (51.90  $\pm$  0.87)  $\mu$ m Scanning Distance [µm]

# CMS Phase-2 Preliminary Interpad-gap for FBK UFSD3.1 W18-Type 10-Supersafe CMS 2x2 Sensor ⊚295V IR laser — Temperature: 25 °C; no-gain distance: (55.41 ± 1.09) μm — Temperature: 10 °C; no-gain distance: (55.79 ± 0.88) μm) — Temperature: -0 °C; no-gain distance: (55.79 ± 0.90) μm — Temperature: -0 °C; no-gain distance: (53.65 ± 0.31) μm — Temperature: -25 °C; no-gain distance: (52.63 ± 0.88) μm — Temperature: -25 °C; no-gain distance: (52.63 ± 0.88) μm

Scanning Distance [µm]

## Voltage scan comparison at different temperatures for W13 and W18 sensors



## Effect of thermal donors induced in bulk and variation in p-stop dose on the no-gain distance measurements of LGADs

S. Bharthuar<sup>1,2</sup>, J. Ott<sup>1,4</sup>, E. Brücken<sup>1,2</sup>, A. Gädda<sup>1</sup>, S. Kirschenmann<sup>1,2</sup>, M. Golovleva<sup>1,2</sup> and P. Luukka<sup>1,5</sup>

on behalf of the CMS Collaboration



 $^1$ Helsinki Institute of Physics, Finland;  $^2$ Department of Physics, University of Helsinki, Finland;  $^4$ Aalto University, Finland; <sup>5</sup>Lappeenranta-Lahti University of Technology, Finland

## Introduction

• The Phase-2 upgrade of LHC to HL-LHC by 2027, would increase the number of interactions per bunch crossings (pileup) up to a value of 140-200. To cope with high pileup rates, the CMS experiment will install a precision MIP timing detector (MTD) to measure minimum ionizing particles (MIPs) with a time resolution of nearly 30-40 ps and hermetic coverage up to a pseudo-rapidity of  $|\eta| = 3$ . The endcap part  $(1.6 < |\eta| < 3)$ of the MTD, known as the End-cap Timing Layer (ETL), will be based on silicon Low-Gain Avalanche Detector (LGAD) technology.



Figure 1: CMS-MTD Design showing the positioning of the ETL and BTL.

• The LGADs from one of the potential vendors, Fondazione Bruno Kessler (FBK), were measured. The measured LGADs from UFSD3.1 production include 2x2 pad sensors from 3 wafers (W13, W14 and W18), with an active thickness of  $50 \, \mu \mathrm{m}$  and identical gain layer with boron doping - equivalent to FBK scale factor of 1.02 (without any carbon co-doping), but have different p-stop dose such that:

p-stop dose W13 < p-stop dose W14 < p-stop dose W18 Within the individual wafers, the sensors vary in their interpad termination design strategies as shown below:

| Туре     | Nominal<br>Width | Inter-pad design     | Strategy   |
|----------|------------------|----------------------|------------|
| 1        | 16               | grid + extra grid    | Aggressive |
| 2, 3, 11 | 21               | grid                 | Medium     |
| 4        | 24               | grid                 | Safe       |
| 5        | 25               | grid                 | Safe       |
| 6, 7, 8  | 28               | grid + extra grid    | Safe       |
| 9        | 38               | 2 p-stop             | Supersafe  |
| 10       | 49               | 2 p-stop + bias grid | Supersafe  |

Table 1: showing different nominal widths and inter-pad terminal strategies of sensors from each wafer.

## **Results on Electrical Characterisation**

## **I-V** measurements:

- The sensors have a breakdown voltage above  $\sim$ 350 V.
- For Super-Safe sensors breakdown voltage does not depend on p-stop dose and electrical configuration of the pads.
- For Aggressive configuration: The p-stop dose plays a role in the breakdown voltage; even when the remaining pads are grounded
- The inter-pad configuration does not affect the breakdown voltage at low p-stop doses. At increasing p-stop doses, the inter-pad design strategy affects the electrical behaviour of the sensor.



Figure 2: I-V characterisation of sensors from three different wafers with varying p-stop dose and different nominal no-gain distance widths measured in three different electronic configurations.

## **C-V** measurements:

## Gain-layer and bulk depletion voltage from C-V:

• For W13 and W14 sensors, the full depletion voltage of the bulk and gain-layer are 25 V and 23 V, respectively. Uncertainties observed in capacitance values, depending on the 'Type', until the gain layer is depleted. No such anomaly is observed in W18 sensors.



Figure 3: Capacitance-2 vs bias voltage plot for sensors from the three wafers showing the gain-layer depletion voltage and the full depletion voltage of the bulk.

### **Reason for anomaly observed in CV measurement:**

- In general, UFSD3.1, like sensors in W18, bulk is intrinsic (almost); very slightly p-doped: depletion begins from the
- In processing: due to thermal donors induced in bulk, a small n-doping layer is created in the bulk for UFSD3.1 sensors from W13 and W14. Depletion begins from the bottom. As there is no inter-pad isolation at the bottom, active crosssectional area is dependent on the nominal no-gain distance and majorly on the no-active region outside the sensor.



Note: thermal donors in the bulk is an anomaly of this production due to unusually high purity silicon and not the nominal design. .

#### **Extraction of doping profile from C-V:**

• Using the formula for doping concentration [n(x)], given by:

$$n(x) = -\frac{C^3}{q\epsilon_{Si}A^2} \left(\frac{dC}{dV}\right)^{-1} \tag{1}$$

where, active cross-sectional area(A) is taken as a constant value of  $1.3 \times 1.3 \text{ mm}^2$ .

• Uncertainties in the capacitance value until the depletion of gain layer  $(V_{GL})$  gives rise to anomaly in doping profile extraction for W13 and W14 sensors. Consistency in C-V measurements, irrespective of the inter-pad strategy, can be observed in doping profile curves for W18 sensors.



Figure 4: Doping profile (doping concentration vs. depth) extracted from C-V measurements for sensors from W18 with different inter-pad strategies

## **Scanning-TCT measurements:**

• Measurements were performed by Particulars based Scanning TCT setup at a low IR laser intensity: 62.5% (equivalent to 5 MIPs), and at varying temperatures: 25°C to -25°C. The interpad profile observed in TCT scan is a convolution of step function and the Gaussian beam of IR laser (of beam spot size  $\sim 10 \ \mu \text{m}$ ): S-curve. The curve fitting function is an errorfunction of the form:

$$f(x) = a + \left[ \frac{b}{2} \times \operatorname{erf} \left\{ \frac{\sqrt{2}(x - c)}{d} \right\} \right] \tag{2}$$



Figure 3: a) Measured no-gain distance is the width between the mid-point of the S-curves corresponding to the adjacent pads. b) FWHM vs optical distance of IR laser from sensor.

- Offset observed in Measured no-gain distance and nominal inter-pad gap value:  $10.65 \pm 2.20 \ \mu m$  for W13 sensors and  $6.27 \pm 1.10 \ \mu \mathrm{m}$  for W18 sensors. Difference in measured no-gain distance between W13 and W18 :  $\sim$  3-7  $\mu m$  (with measured distance for W13 at a higher value).
- Voltage scans at RT: behaviour is identical for sensors from W13 and W18. However, at -25°C, the voltage scan plot for W13 gets steeper and collected charge above 300V is 2-3 higher than for W18.



Figure 5: showing comparison in: (i) current signals (a and b), and (ii) inter-pad profile measurements (c and d) with varying temperature for Type-6 sensors from W13 and W18, respectively.

• With variation in temperature from 25°C to -25°C, the change in the measured no-gain distance decreases with an increase in the nominal interpad value; % decrease in measured no-gain distance value higher for W13 sensors.

## CMS Phase-2 Preliminary

|                    |                                   |                             | W13          |              |                                 |
|--------------------|-----------------------------------|-----------------------------|--------------|--------------|---------------------------------|
| Туре               | Nominal no-gain<br>distance value | Measured no-gain distance @ |              |              | % Decrease in Measured value    |
|                    |                                   | 25ºC                        | 0°C          | -25ºC        | (from 25°C to -25°C)            |
| Type 6<br>(285 V)  | 28                                | 40.5 ± 0.21                 | 36.55 ± 0.08 | 32.90 ± 0.47 | 18.77                           |
| Type 9<br>(300 V)  | 38                                | 46.38 ± 0.25                | 40.03 ± 0.06 | 37.91 ± 0.19 | 18.26                           |
| Type 10<br>(295 V) | 49                                | 60.09 ± 0.09                | 56.22 ± 0.43 | 51.90 ± 0.87 | 13.63                           |
|                    |                                   |                             | W18          |              |                                 |
| Туре               | Nominal no-gain<br>distance value | Measured no-gain distance @ |              |              | % Decrease in Measured<br>value |
|                    |                                   | 25ºC                        | 0°C          | -25ºC        | (from 25°C to -25°C)            |
| Type 6<br>(285 V)  | 28                                | 33.80 ± 0.14                | 31.95 ± 0.08 | 28.68 ± 0.08 | 15.15                           |
| Type 9<br>(300 V)  | 38                                | 43.17 ± 0.31                | 38.39 ±0.67  | 38.84 ± 0.56 | 10.03                           |
| Type 10<br>(295 V) | 49                                | 56.41 ± 1.09                | 55.27 ± 0.90 | 52.63 ± 0.88 | 6.70                            |

**Table 2:** Measured no-gain distance with temperature variation for nominal design sensors from W13 and W18.Note: Uncertainties are statistical only. The bias voltage is changed to keep the collected charge constant for measurements taken at different temperatures.



Figure 6: Voltage scan on temperature variation for W13 and W18 sensors.

## **Conclusion**

- Decrease in the p-stop dose improves the breakdown behaviour of the sensors; independent of the interpad termination strategy.
- Thermal donors induced in the p-type bulk creates uncertainties corresponding to the capacitance values measured till the depletion of the gain layer. Due to space charge inversion of the bulk, the active cross-sectional area, majorly the area lying outside the sensors, affects their C-V measurements.
- Decrease in the measured no-gain distance with decreasing temperature is slightly higher for sensors with thermal donors induced in the bulk. The % decrease in no-gain distance value does not affect the fill factor significantly.

## **Special Acknowledgments**





