



# Production, calibration and performance of the layer 1 replacement modules for the CMS pixel detector

Dinko Ferenček, Matej Roguljić, Andrey Starodumov

Ruđer Bošković Institute, Zagreb

On behalf of the CMS Collaboration

Vertex 2020 October 6, 2020

# Introduction and motivation

- Current Phase-1 upgraded pixel detector installed during EYETS 2016/2017
- Due to radiation damage, the innermost layer (L1) of the pixel barrel detector (BPix) would have to be replaced during Run 3
- L1 replacement built now during LS2
  - Also features an improved readout chips
- Joint project of PSI, ETH Zurich, Helsinki Institute of Physics, and RBI
  - RBI team's main task to perform a complete qualification and calibration of 140 pixel modules





More details about other upgrades covered in Klaas Padeken's talk

# L1 module overview

- High-density interconnect (HDI10d)
  - Glued on top of the sensor and wire-bonded to readout chips (ROCs)
  - Routes control and data signals between ROCs and token bit manager chips (TBMs)
  - Routes high-voltage to the sensor
- Sensor
  - "Sandwiched" between HDI and ROCs
  - Connected with ROCs through bump-bonds (bottom image)
- Read-out chips (PROC600 v4)
  - 16 chips at the bottom of the module
  - "Reads" signals from sensor, processes them and sends to TBM







# Module performance









## Threshold trimming

- Trimming to about 2000 e<sup>-</sup>
- Thresholds uniform within about 40 e<sup>-</sup>

#### Noise per pixel

.

- Mean of about 200 e⁻ and small tail
- Under X-rays, higher noise with longer tail, rate of noisy pixels still low (~1-2%)

### High rate efficiency



- 300 MHz/cm<sup>2</sup> X-ray rate corresponds the expected hit rate on L1 at the LHC
- Modules not installable if hit efficiency <95%</li>
- Great majority of ROCs have hit efficiency above 98% (target for PROC600)

# Summary

#### Cumulative production graph Grade A+B Grade C incomplete # modules 60 40 20 03-01 01-31 03-31 04-30 05-30 06-29 07-29 08-28 2020 2020 2020 2020 2020 2020 2020 2020

#### **Mounted L1 modules**



#### **Grading overview**

|                                  | Grade |     |    |       |
|----------------------------------|-------|-----|----|-------|
|                                  | Α     | В   | С  | Total |
| Full qualification               | 13    | 110 | 3  | 126   |
| High rate test                   | 87    | 24  | 12 | 123   |
| Failed at reception (incomplete) | 1     | 1   | 1  | 5     |
| Faulty after assembly            | 1     | /   | /  | 10    |
| Final                            | 8     | 102 | 14 | 141   |

A: <1% defective pixels per ROCB: 1%<4% defective pixels per ROC

Module grade based on the worst performing ROC. **A** and **B** both installable

### Yield=(A+B)/Total=110/141=78%

- Production and testing campaign successfully completed
- Final production yield of 78% (110 installable modules)
- Modules ranked based on their quality and accordingly assigned to appropriate locations on L1
- Module mounting on the L1 support structure successfully completed

#### More details in the full poster