Production, calibration and performance of the layer 1 replacement modules for the CMS pixel detector

<u>Dinko Ferenček</u>, Matej Roguljić, Andrey Starodumov

Ruđer Bošković Institute, Zagreb and CMS Collaboration

The 29th International Workshop on Vertex Detectors (October 5-8, 2020)

Introduction and motivation

- Current Phase-1 upgraded pixel detector installed during EYETS 2016/2017
- Due to radiation damage, the innermost layer (L1) of the pixel barrel detector (BPix) would have to be replaced during Run 3 [1]
- L1 replacement built now during LS2
 - Also features an improved readout chips
- Joint project of PSI, ETH Zurich, Helsinki Institute of Physics, and RBI
 - RBI team's main task to perform a complete qualification and calibration of 140 pixel modules

L1 module overview

- High-density interconnect (HDI10d)
- Glued on top of the sensor and wire-bonded to readout chips (ROCs)
- Routes control and data signals between ROCs and token bit manager chips (TBMs)
- Routes high-voltage to the sensor
- Sensor
 - "Sandwiched" between HDI and ROCs
 - Connected with ROCs through bump-bonds (bottom
- Read-out chips (PROC600 v4)

X-ray setup at ETHZ

~65 minutes

~25 minutes

using 4 fluorescence targets

Pixel hit efficiency at high rates

Calibration of Vcal DAC into electrons

Testing up to 2 modules in parallel. Vcal calibration

- 16 chips at the bottom of the module
- "Reads" signals from sensor, processes them and sends to

Test setup and procedures

Cold box setup at PSI

- Modules electrically tested and calibrated (up to 4 modules tested in parallel in a temperature and humidity controlled environment)
- IV curve taken after each FQ&C
- FQ&C+IV@-20 °C, 5 T-cycles (from -20 to +10 °C), FQ&C+IV@-20 ° C, FQ&C+IV@+10 °C → Takes ~8 hours in total

Temperature graph for one FQ&C cycle

Fluorescence High rate beam Fluorescence

Module testing workflow

Module performance

Threshold trimming

- Trimming to about 2000 e⁻ (Vcal=50)
- Thresholds uniform within about 40 e⁻ and stable versus temperature

Noise per pixel S-Curve widths: Noise (e)

T = 20 °C

- Mean of about 200 e⁻ and small tail
- Under X-rays, higher noise with longer tail, rate of noisy pixels still low (~1-2%)

High rate efficiency

- 300 MHz/cm² X-ray rate corresponds the expected hit rate on L1 at the LHC
- Modules not installable if hit efficiency <95%
- Great majority of ROCs have hit efficiency above 98% (target for PROC600)

Production yield

Goal: production of 96 installable modules + 20% spares Grading overview

Cumulative production graph

	Grade			
	A	В	С	Total
Full qualification	13	110	3	126
High rate test	87	24	12	123
Failed at reception (incomplete)	/	/	/	5
Faulty after assembly	1	/	/	10
Final	8	102	14	141

X-ray Vcal calibration

 Very narrow distribution of slopes, allows using just one value for all ROCs

Yield=(A+B)/Total=110/141=78%

- Production and testing campaign successfully completed
- Final production yield of 78% (110) installable modules)
- Modules ranked based on their quality and accordingly assigned to appropriate locations on L1 (highest quality modules in the center)
- Module mounting on the L1 support structure successfully completed

REFERENCES

[1] CMS Technical Design Report for the Pixel Detector Upgrade, CMS Collaboration (A. Dominguez et al.), Sep. 7, 2012, CMS-TDR-011, URL: https://cds.cern.ch/record/1481838

ACKNOWLEDGMENTS

This work was supported in part by the Croatian Science Foundation, under the project IP-2016-06-3321, and by the European Union's Horizon 2020 research and innovation programme under grant agreement No 669014 (PaRaDeSEC).

European Union Together towards the **EU** funds

This work was supported in part by European Union's European Regional Development Fund