

Precision Timing with the CMS MTD Endcap Timing Layer for HL-LHC

V. Sola – INFN Torino on behalf of the CMS Collaboration

A MIP Timing Detector for the CMS Phase-2 Upgrade Technical Design Report

A HERMETIC MIP TIMING DETECTOR FOR CMS

Simulation of a VBF H $\rightarrow \tau\tau$ in 200 pile-up pp collisions

200 pp vertices

Conditions at HL-LHC very challenging

→ at the edge of tracker performances

Spread of ~180 ps in time collisions

→ slices of 35 ps will reject a factor of 5 more pile-up

 ⇒ With 35 ps time resolution, instances of vertex merging are reduced from 15% in space to 1% in space-time, as in LHC operation

MIP TIMING DETECTOR AT A GLANCE

V. Sola

PHYSICS IMPACT

Improved reconstruction performance

- ► higher b-tagging efficiency
- improvement in identification and isolation of photons and leptons
- better rejection of fake jets due to pile-up
- > 10%-20% gain in S/VB for many Higgs decay channels
 - → +20-30% effective luminosity
- \rightarrow Velocity measurement (TOF) for low p_T hadrons
 - \rightarrow better π /K and K/p discrimination
- > 4D vertex reconstruction of primary and secondary vertices

VERTEX 2020 - VIRTUAL 08.10.2020

→ provides a close kinematic for Long Lived Particles decaying within MTD

THE ENDCAP TIMING LAYER — ETL

- > Two disks of LGAD sensors per side

 - □ double-sided sensor layers for large geometrical acceptance (85%/disk)
- > For \mathcal{L}_{int} = 3000 fb⁻¹, expected fluence ranges from $1.5 \times 10^{14} \, n_{eq}/cm^2$ to $1.6 \times 10^{15} \, n_{eq}/cm^2$ at high $|\eta|$
- Designed to be removable in case of needed maintenance/repairs during technical stops

Less than $8 \times 10^{14} \, n_{eq}/cm^2$ for 70% of ETL Less than $1 \times 10^{15} \, n_{eq}/cm^2$ for 88% of ETL

Only 12% of ETL above $1 \times 10^{15} \, n_{eq}/cm^2$

THE ETL DESIGN

ETL SENSORS

- >> 50 μm thick planar silicon sensors based on Low-Gain Avalanche Diode (LGAD) technology
 - ightharpoonup charge multiplication for $E \gtrsim 300 \text{ kV/cm}$
 - pain layer through p-type implant
 - ⊳ signal gain ~ 10-30
- > Sensor requirements:
 - - \rightarrow pad size \sim few mm²
 - □ large production yield
 - → limited size sensors

 - → optimize no-gain region between pixels
 - → maximize fill factor while maintaining pad isolation to maximize efficiency

ETL SENSORS

- >> 50 μm thick planar silicon sensors based on Low-Gain Avalanche Diode (LGAD) technology
 - ightharpoonup charge multiplication for *E* ≥ 300 kV/cm
 - pain layer through p-type implant
 - ⊳ signal gain ~ 10-30
- > Sensor requirements:
 - - → pad size ~ few mm²
 - □ large production yield
 - → limited size sensors

 - → optimize no-gain region between pixels
 - → maximize fill factor while maintaining pad isolation to maximize efficiency

FBK & HPK released new LGAD sensor productions on Summer 2020 to accomplish ETL requirements

2 NEW PRODUCTIONS FOR ETL – FBK UFSD3.2

17 wafers to finalise studies on gain layer design and inter-pad strategy

- ≥ 2 different wafer thickness: 45 and 55 μm
- □ 2 different gain layer depth: shallow and deep
- → 4 different split of gain layer dose
- ► 4 different splits of Carbon co-implanted in the gain layer volume, to enhance rad-hardness
- □ 2 different strategies of gain layer annealing (diffusion)
- → 9 different inter-pad strategies (types)

[Ref for types: https://indico.cern.ch/event/ 855994/contributions/3637004/]

2x2 sensors to investigate different inter-pad strategies

2 NEW PRODUCTIONS FOR ETL — HPK2

13 wafers to finalise studies inter-pad strategy and uniformity of the production

- □ 2 different wafer layout: small and large
- → 4 different split of gain layer deep design
- → 2 different edge strategies: 300 and 500 μm
- ► 4 different inter-pad strategies: IP3, IP4, IP5, IP7

Small sensors to study inter-pad design, edge termination, and radiation resistance

FBK & HPK – IV Characterization

IV from FBK UFSD3.2 LGAD single pad

- → 3 wafers show optimal gain behaviour (W4, W7, W14)
- → 3 gain layer doping can be increased (W8, W10, W12)
- ▶ W4 has lower dark current, due to a lower dose of implanted C

IV from HPK2 LGAD single pad

- ▶ Breakdown at 200-250 V ideal for ETL design
- Split 3 shows good gain behaviour
- Split 4 is target for ETL timing requirements

FBK & HPK – CV Characterization

CV from FBK UFSD3.2 W7 LGAD single pad

W7 is the replica of W5 from the FBK UFSD3 production, reference wafer on UFSD3.2

→ Gain layer depletion at about 23 V, as expected

CV from HPK2 All splits

Depletion Voltage of the gain layer between 51 and 56 V

→ About 10% difference from split 1 to 4

FBK & HPK — Inter-pad Width

Inter-pad width measured using Transient Current Technique (TCT)

The width is obtained scanning two adjacent pads and measuring the collected charge as a function of the laser position

The measured width is a convolution of a step function with a Gaussian \Rightarrow an s-curve

Type 10 FBK UFSD3.2 & IP3 HPK2 result in a fill factor of ~ 90%

Inter-pad: wider no-gain regions have higher breakdown voltage

Inter-pad FBK UFSD3.2 CMS Phase-2 *Preliminary*

Type (IP)	Measured [μm]
4	35-40
8	40-45
10	65-70

Inter-pad HPK2 – Split 4 CMS Phase-2 Preliminary

Type (IP)	Measured [μm]
IP3	64
IP4	91
IP5	102
IP7	120

TCT laser parameters:

ightharpoonup f = 1 kHz

Charge ~ 6 MIP

ightharpoonup Laser spot = 10 μ m

Measurements performed at RT Systematic uncertainty = $5 \mu m$

13

FBK & HPK – Gain with Bias

FBK UFSD3.2 – Gain – Beta Setup

HPK2 – Gain – Beta Setup CMS Phase-2 *Preliminary*

Gain = LGAD-charge / PiN-charge

LGAD charge [fC] = area [pWb] / 4700 Ω (4700 Ω is the UCSC board trans-impedance) PiN charge assessed assuming nominal thickness (0.65 fC for 55 μ m, 0.54 fC for 45 μ m thickness) RMS noise = 1.2 - 1.6 mV @ room temperature

Error bars of ± 5 on gain measurement are shown for FBK W12 and HPK Split 4

All sensors have good gain and low noise

FBK & HPK – Time Resolution with Bias

FBK UFSD3.2 – σ_t with Bias – Beta Setup CMS Phase-2 *Preliminary*

CMS Phase-2 Preliminary

Split1
Split2
Split3
Split4

Uncertainties are similar for all curves but shown for only one

150

200

Reverse Bias [V]

250

300

 $HPK2 - \sigma_t$ with Bias – Beta Setup

Trigger: HPK3.1 1x3 mm² LGAD single pad, σ_t = 33ps @230V All measurement are performed at room temperature

Error bars of \pm 5 ps on σ_t measurement are shown for FBK W12 and HPK Split 4

→ For a given bias, more doped wafers show better time resolution as they have higher electric field to trigger impact ionization

50

100

FBK & HPK – Time Resolution with Gain

FBK UFSD3.2 – σ_t with Gain – Beta Setup CMS Phase-2 *Preliminary*

 $HPK2 - \sigma_t$ with Gain – Beta Setup CMS Phase-2 *Preliminary*

Trigger: HPK3.1 1x3 mm² LGAD single pad, σ_t = 33ps @230V All measurement are performed at room temperature

Error bars of \pm 5 on gain and \pm 5 ps on σ_t measurements are shown for FBK W12 and HPK Split 4

For a given gain, less doped wafers show better time resolution as they are operated at higher bias → Higher holes drift velocity results in better dV/dt

ETL RADIATION TOLERANCE

Different strategies have been adopted to mitigate radiation effects on LGAD sensors:

Carbon atoms co-implanted in the gain layer volume halves the acceptor removal due to radiation

```
[M. Ferrero el al., doi:10.1016/j.nima.2018.11.121]
```

Deep gain layer design improves the capability of V_{bias} to recover the electric field that has been lost due to acceptor removal

```
[N. Cartiglia et al., HSTD12, Hiroshima, Japan (2019)]
```

```
Target: get 15 fC of charge applying a V_{bias} = 500 - 600 \text{ V} at \Phi = 1.5 \cdot 10^{15} \text{ n}_{eg}/\text{cm}^2
```

 \Rightarrow Possible to achieve $\sigma_t \sim 30$ ps till the end of life-time

ETL READ-OUT CHIP — ETROC

Precision determination of the arrival time of small water drop ripples, with low power < 4mW/channel

- ► ETROC bump-bonded to LGAD, to handle 16x16 pixels each 1.3×1.3 mm²
- □ ETROC process based on TSMC 65 nm technology
- ► ASIC contribution to time resolution < 40ps
- Deal with small signal size (~ 6 fC, at end of operation)
- Power consumption < 1W/chip, L1 buffer latency: 12.5 μs</p>
- → Single TDC for both time of arrival and time over threshold
- ► Flexible low & high-power amplifier modes

Simplified schematic and layout of ETROC preamplifier

ETROCO

Two data paths designed in ETROCO

- ⊳ Submitted in Dec. 2018
- ➤ Analog front-end
- □ Tests by far confirmed functionality
- ▶ First round beam test early 2020, both data paths tested
 - → Amplifier output recorded through internal buffer and external 2nd stage amplifier
 - \rightarrow *Discriminator output* to study contributions to time resolution from sensor due to Landau fluctuations, and pre-amp & discriminator jitter design goal σ_t < 50 ps

ETROCO – Amplifier Time Resolution

- ▶ Beam test at Fermilab facility
- □ Timestamp measured with constant fraction threshold of 20%
- → Right plot has time reference contribution subtracted

Achieved 30-35 ps time resolution for pre-rad sensors operating above 20 fC

High power mode 5-10% better time resolution than low power

ETROCO – Discriminator Time Resolution

- ▶ Beam test at Fermilab facility
- ightharpoonup Time resolution = $\sigma(t_0 t_{ref})$ after ToT correction)
- □ Contribution from time reference is subtracted

For pre-rad sensors operating above 20 fC → time resolution of 40-50 ps with 100% efficiency

⇒ Results compatible with design target of 50 ps per hit

ETROC1

ETROC1 include a TDC brand new design (low power)

- ► Submitted in Aug. 2019
- ► 4×4 pixel array with full front-end including TDC
- ➤ TDC block works well
- ► ETROC0 is used directly in ETROC1
- ► TDC requirements
 - → TOA bin size \lesssim 30ps, TOT bin size \lesssim 100ps
 - → Lower power highly desirable ETROC TDC design goal < 0.2mW per pixel

ETROC1 Top Layout

ETROC1 Single Pixel Layout

ETROC1 – TDC Resolution

The TDC has been extensively simulated and improved (~ one year development effort)

Early testing shows good performances:

- ▶ The measured average TDC bin size is 17.8 ps
- Excellent timing performance ≤ 6 ps
- Demonstrated to operate at ultra low-power < 0.1 mW</p>

ETROC2&3 — Ongoing

ETROCO: single analog channel

ETROC1: with TDC and 4×4 clock tree

ETROC2: 8×8, or potentially 16×16, full functionality

ETROC3: 16×16 full size chip

Full-chip clock distribution design advanced

➤ The textbook H-tree clock distribution

Waveform sampling spec and design developed

- Single channel ADC prototype received last year → Works well
- The core 2.56 GS/s waveform sampler submitted in March 2020 → Waveform sampler testing results are very good

Much of the supporting circuitries will be based on existing design blocks in 65nm from CERN (IpGBT)

ETROC2: design in progress → **Submission in Q3 2021** (postponed due to COVID)

DAQ & Clock Distribution — Overview

DAQ: < 0.4 Tb/s data rate at 750 kHz L1A

- ► ETL bi-directional links and data rate: 1600 links; < 1.5 Gb/s / link
- ► ATCA crates with 6+6 ETL DAQ nodes (e.g. Serenity KUP15)
 - → Being re-visited and optimized now

Clock: < 15 ps jitter (channel-to-channel)

- ▶ Baseline: Encoded within lpGBT links
- ► Risk mitigation: "Pure clock path"

Clock distribution tree

Schematic of an MTD DAQ ATCA crate layout

SUMMARY

- > CMS ETL is among the first-generation precision timing detectors
- > Thin double layers between the tracker and the calorimeters
- > ETL is the first large-scale application of LGAD technology
 - → Unprecedented size and scope for a timing detector
- Challenging front-end electronics design
 - → Precision determination of the arrival time of small water drop ripples
- > 30-40 ps per track resolution at HL-LHC start, < 50 ps at 3000 fb⁻¹

⇒ Exciting time ahead of us

ACKNOWLEDGEMENTS

We kindly acknowledge the following funding agencies, collaborations:

- ► RD50, CERN
- ► Horizon 2020, grant UFSD669529
- ► AIDA-2020, grant agreement no. 654168
- MIUR, Dipartimenti di Eccellenza (ex L. 232/2016, art. 1, cc. 314, 337)
- → Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- → Ministero della Ricerca, Italia, FARE, R165xr8frt_fare
- ► INFN CSN5

BACKUP

A TIME-TAGGING DETECTOR

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning

⇒ Strong interplay between sensor and electronics

FAST TIMING - THE INGREDIENTS

For a planar detector geometry $\sigma_t^2 = \sigma_{Current}^2 + \sigma_{Jitter}^2 + \sigma_{Time\ Walk}^2 + \sigma_{TDC}^2$ with a saturated velocity, the σ_t main contributors are current fluctuations and jitter

Current fluctuations are due to the physics of MIP ionization

5e-09 5.2e-09 5.4e-09 5.6e-09 5.8e-09 6e-09 6.2e-09 6.4e-09

(Landau fluctuations)

- Does not depend on the gain

For 50 μ m thick sensors contribute ~ 30 ps

→ Physical limit to time resolution

Jitter is driven by the electronics

1.5e-05

1e-05

SHOT NOISE

Shot Noise:
$$ENC = \sqrt{\int i_{Shot}^2 df} = \sqrt{\frac{I \cdot (Gain)^{2+x}}{2e} \cdot \tau_{Int}}$$

Shot noise increases faster than the signal

→ the ratio S/N becomes worse at high gain

Best S/N ratio

To minimize the shot noise

- **>>** Low gain (G = 10-20)
- > Cool the detector
- ➤ Use small pads to have less leakage current

It has been measured that the values of Shot Noise are below the Current fluctuations

LGAD RADIATION TOLERANCE

LGAD suffer for gain reduction due to irradiation FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

⇒ The usage of Carbon double the radiation hardness of UFSD

 $\sigma_{\rm t}$ ~ 30 ps achievable up to 1.5 · 10¹⁵ n_{eq}/cm² using Carbon

Radiation Effects on Boron+Carbon UFSD

Adding Carbon to the Boron implant halves the reduction of the gain layer doping due to irradiation

Boron

Radiation creates interstitial defects that inactivate the Boron

Carbon

Interstitial defects filled with Carbon instead of with Boron and Gallium

- > SIMS measurements confirm this model: pre- and post-radiation sensors have exactly the same Boron density in the gain layer region, however after irradiation, the Boron is not active any longer
 - → Controlled annealing to re-activate the gain layer under study

1/C² vs V_{bias} give information on the doping density inside the silicon volume

TIME RESOLUTION WITH CARBON

FBK UFSD2 B+C:

- > Constant time resolution up to 1.5E15 n_{eq}/cm^2 increasing V_{bias} to 650
- \geq Constant V_{bias} up to 1.5E15 n_{eq}/cm^2 with 30% degradation in time resolution

1.5E15 n_{eq}/cm^2 at HL-LHC correspond to 4000 fb⁻¹ at $|\eta| = 3$

→ Current R&D focuses on reducing the need to increase the bias voltage

ETL RADIATION TOLERANCE

- ► Time resolution < 40 ps achieved with up to 1.5×10^{15} n_{eq}/cm^2
- ▶ Increasing bias voltage to compensate for loss of gain from radiation damage
- ► Leakage current mitigated by cooling to -30°C

Measurement of the inter-pad width

No-gain area width measured with a TCT setup (Particulars)
Get the width by scanning two nearby pads → charge vs position

Results with a point like spot \rightarrow our spot is 10-15 μ m with a Gaussian shape The real profile is a convolution with a step function with a Gaussian = s-curve

FBK UFSD3.2 – Inter-pad Width

FBK UFSD3.2 – Type 4, 8, and 10 CMS Phase-2 *Preliminary*

Wafer	Type (IP)	Bias [V]	Measured [μm]
W4	T4	230	35.0
	T8	230	40.5
	T10	200	68.0
W10	T4	320	39.0
	T10	320	65.0
W14	T4	280	42.0
	T8	240	44.0
	T10	280	71.0
W7	T4	260	34.0
	T8	250	38.0

Inter-pad FBK UFSD3.2 CMS Phase-2 *Preliminary*

Type (IP)	Measured [μm]
4	35-40 μm
8	40-45 μm
10	65-70 μm

Inter-pad width measured using Transient Current Technique (TCT)

TCT laser parameters:

- ightharpoonup f = 1 kHz
- Charge ~ 6 MIP
- ightharpoonup Laser spot = 10 μ m

Measurements performed at room temperature Systematic uncertainty = $5 \mu m$

HPK2 – Inter-pad Width Measurement

Inter-pad HPK2

CMS Phase-2 *Preliminary*

	IP	Bias [V]	Gain	Measured [μm]
Split 4	IP3	220	30	64.2
	IP4	220	30	91.1
	IP5	220	30	101.8
	IP7	220	30	120.4

Inter-pad width measured using Transient Current Technique (TCT)

TCT laser parameters:

$$ightharpoonup f = 1 \text{ kHz}$$

$$ightharpoonup$$
 Laser spot = 10 μ m

Measurements performed at room temperature Systematic uncertainty = $5 \mu m$

FBK UFSD3.2 – Amplitude & Charge

Wafer #	Thickness	Depth	Dose Pgain	Carbon	Diffusion
4	45	Shallow	L	0.4A	CHBL
7	55	Shallow	L	Α	CHBL
8	45	Deep	Ľ'	Α	CBL
10	45	Deep	Ľ'	0.6A	CBL
12	45	Deep	M'	Α	CBL
14	45	Deep	M'	Α	СВН

Measurements taken with beta source Pre-amplification stage with UCSC board Room temperature

charge [fC] = area [pWb] / 4700 Ω 4700 Ω is the UCSC board trans-impedance

FBK UFSD3.2 – Signal Amplitude – Beta Setup CMS Phase-2 *Preliminary*

FBK UFSD3.2 – Collected Charge – Beta Setup CMS Phase-2 *Preliminary*

HPK2 – Amplitude & Charge

200

220

240

Gain split	BD voltage	Target	
1	160V	ATLAS HG-TD	
2	180V	AILAS HG-ID	
3	220V	CNAC ETI	
4	240V	CMS ETL	

Measurements taken with beta source Pre-amplification stage with UCSC board Room temperature

charge [fC] = area [pWb] / 4700 Ω 4700 Ω is the UCSC board trans-impedance

CMS Phase-2 Preliminary

250 Split1
Split2
Split3
Split4

150
50

Reverse Bias [V]

120

140

HPK2 - Signal Amplitude - Beta Setup

ETROCO – Amplifier Performance

Most probable amplitude and charge as a function of reverse bias

ETROCO – Amplifier Performance

Key ingredients for understanding jitter and time resolution

ETROCO – Discriminator Procedure

An example of time-walk correction

Charge MPV = 14 fC \rightarrow TOT = 4.5 ns The bulk is between 10-25 fC \rightarrow TOT = 4-5.5 ns

Nominal operation at 15 DAC above the baseline

ETL Modules & Service Hybrids

Module Design

- 1: AIN module cover
- 2: LGAD sensor
- 3: ETL ASIC
- 4: Mounting film
- 5: AIN carrier
- 6: Mounting film
- 7: Mounting screw
- 8: Front-end hybrid
- 9: Adhesive film
- 10: Readout connector
- 11: High voltage connector
- 12: LGAD bias voltage wirebond
- 13: ETROC wirebonds

Service Hybrid

^{3:} Readout board 4: VTRx+

^{5:} HV-PP0 connector

^{6:} LV-PP0 connector 7: Support disk

^{8:} CO₂ cooling tube

^{9:} Power board cover