

Vertex Detector for LHCb upgrade II

- Introduction to LHCb upgrade-II
- Scaling from upgrade-I
- Key performance parameters and trade-offs
- Technological challenges

Martin van Beuzekom on behalf of the LHCb VELO group October 8th 2020

LHCb upgrade II

- LHCb: dedicated heavy flavour experiment at LHC
- Why upgrade:
 - Hints of New Physics in LHC Runs1&2
 - Need much more data to further test theoretical predictions
 - Run at higher luminosity
 - Hence need for new / improved detector
- Upgrade-I currently being built/installed
 - (see Manuel's talk)

2

- Ramping up developments for Upgrade-II
 - To be installed in LS4 (~2031)

Physics Case

LHCb Upgrade II

for an

Run1 - Run2	Run3						Run4				Run5			Run6			
	⊥ = 2 x	10 ³³ -				LS3 :-ATLA e 2 upgi		—	⊥ _{int} ~ 5	50 fb ⁻¹	LS4	£ = 1-	2 x 10	34	LS5	→£ _{int} ~	300 fb ⁻¹
2010	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2040

Upgrade II operating conditions

- HL-LHC will give LHCb a luminosity of 1.5x10³⁴ cm⁻²s⁻¹
- = 7.5x luminosity of Upgrade I
- but also 7.5x particle/track/hit rate
- and 7.5x radiation damage / unit of time

- pile-up of ~50
- $\sigma_z \sim 45 \text{ mm}$
- $\sigma_t \sim 185 \text{ ps}$

Upgrade-I as starting point for Upgrade-II

- Upgrade-II is in very early stage of R&D phase
- -> Showing Upgrade-I design in absence of a detailed/optimised design for Upgrade-II
- Moveable detector, to allow proton beam injection/ramping
- In vacuum to minimise material ('beam pipe') between vertices and first sensor

Scaling up from Upgrade-I

Baseline: Upgrade-II should have at least the same performance as Upgrade-I

Hit/track rate, radiation etc. are scaled up from Upgrade-I

Key numbers Upgrade-I vertex detector:

- 26 stations
- Silicon planar pixels (200 μm n-on-p)
- 55 μm pitch
- binary readout (VeloPix ASIC)
- 5.1 mm from beam
- fluence at tip of sensor: 8x10¹⁵ 1 MeV n_{eq}/cm²
- hottest ASIC (2 cm²) produces ~ 20 Gbit/s

Upgrade-II

- integrated luminosity 300 fb⁻¹ (6x)
- instantaneous luminosity 1.5x10³⁴ cm⁻²s⁻¹ (7.5x)

Why timing for high luminosity

- Disentangle multiple primary vertices
- Assign secondary vertices to correct primary vertices
- Physics background reduction

typical single bunch crossing

Time slices

- Required temporal resolution < 50 ps / hit,
 < 20 ps / track
- TOF complicates matters

Timing layer or 4D tracking

- Timing is key for primary vertex efficiency
- Either with timing planes or 4D tracking

4D tracking benefits:

- Pattern recognition efficiency
- Reduction of ghost track rate, saves CPU power
- Studies ongoing of 4D tracking on CPU, GPU and FPGAs
- Timing layer(s) not ruled out, but
 - Tighter timing requirements (track time)
 - Development of two technologies
 - Less redundancy, poorer efficiency due to smaller geometric coverage

Core business: how to get a good IP resolution (simplified)

3 main ingredients:

- intrinsic hit resolution σ_1 , σ_2
- Distance to 1st measured point and lever arm
- Multiple scattering in detector material and RF-foil
 - worse at low P_T

$$\sigma_{geom} = \sqrt{\frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}}$$

$$\sigma_{\mathsf{MS}} = \frac{r}{p} 13.6 \, \mathsf{MeV} \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \log \left(\frac{x}{X_0} \right) \right]$$

location of material is important

Material budget: RF foil

VELO is in a secondary vacuum enclosure:

- Guides beam mirror currents, avoid wakefields
- Minimises RF pickup by the sensor modules
- Lowers the constraints on material outgassing
 - which pollutes beam pipe surfaces
- Corrugated foil shape reduces amount of material before first measured point, which is a significant factor for IP resolution
- Thickness set by need to tolerate 10 mbar pressure difference between primary and secondary vacuum

Corrugations needed to minimize material.

Optimise distance vs. pitch vs. material vs. ...

- Upgrade-I sensors are at 5.1 mm from beam
- Same performance for Upgrade-II can be achieved at 12.5 mm from beam (8x less radiation) if:
 - Pixel pitch is reduced from 55 to 41 μ m (-> 55% of area for the pixel electronics)
 - Material in RF foil and first detection layer is drastically reduced

Find a compromise

Physicists

(ASIC) engineers

- smaller pixels
- faster timing
- thinner sensors (less signal)
- less material
- lower temperature / power

- not too small pixels
- more signal
- low pixel capacitance
- generous power budget

Radiation levels

- High in an absolute sense: ~5x10¹⁶ 1 MeV n_{eq} / cm² @ 5.1mm
- Highly non-uniform
 - Factor 40-100 difference in fluence within in a single sensor
 - Is a challenge for sensors, especially those with gain
 - Is challenge for the ASIC: it is all about locally high rates
- To date no single sensor technology has been shown to survive the required life time fluence
- (bi-)annual replacement could be an option

- fluence in radial direction drops as AR-k
- somewhat smaller k for downstream stations

Readout Chip Passive Pixel Sensor particle track

hybrid planar

- signal proportional to thickness
- charge collection time depends on thickness
- faster -> thinner -> less signal -> FE challenge

one slide on sensor technology

(hybrid) Low Gain Avalanche Detector (LGAD)

- gain provides sufficient charge at small thickness
- gain drop as function of fluence
- non-uniform irradiation (next slide)

(hybrid) 3D

- signal proportional to thickness
- small column to column distance -> fast
- higher pixel capacitance
- impact of dead regions requires study

(depleted) monolithic

- thin layer, hence small signal
- but also low capacitance
- Alice upgrade for LS4 considers < 50 ps/hit timing
- readout in same technology as sensor, relatively large feature size
- moderately radiation tolerant

Where VELO is different, LGAD and non-uniform irradiation

- Initial acceptor removal reduces gain
- Gain can be recovered by applying more bias voltage
- VELO fluence is very non-uniform

16

- can we run with one bias voltage per sensor, how to get rid of the huge signals?
- is it possible to define multiple bias regions in one LGAD sensor?

A few words on the ASIC

Front-end: minimise jitter by maximising slope at amplifier output (ideal sensor, dirac delta signal)

$$\frac{dv_{out}(0)}{dt} \sim \frac{Q_0 g_m}{C_I(C_L + C_M)}$$

Optimal for:

- Large input signal (Q₀)
 - Large gain (g_m), g_m increases with ampl. bias current
 - at the cost of more power
 - how much power can we afford?
- Low capacitance (both input and internal)

Other key ASIC figures (size 2 cm²)

	@5.1 mm	@12.5 mm
TID	24 MGy	3 MGy
pitch	55 μm	41 μm
Bandwidth	~ 250 Gbit/s	~94 Gbit/s
hottest pixel	350 kHz	40 kHz

Example: Timepix4 front-end simulation (Ibias = $3\overline{u}A$)

Fine pitch fast timing ASICs: The

See previous talk by Adriano Lai

32 x 32 pixel read-out matrix
To be bonded on 3D sensors, Batch #2
TSV-ready matrix

Pixel size: 50x55 μm²
Pixel pitch: 55 μm
1 TDC/pixel

- Addressing the VELO upgrade-II challenge
- 28 nm technology
- Optimised for 3D-trench sensors
- 55 μm pitch
- 25% of area for Analog front-end
- TDC per cell
- Submitted last week

simulated performance:

HP stands for High (or maximum) Power, i.e. ≈ 23 μW / cell

	Schem	atic	Layout			
Power	Nominal	HP	Nominal	HP		
Slew-Rate [mV/ns]	380	540	250	360		
RMS noise [mV]	5.0	4.9	3.9	3.8		
Jitter [ps]	13.2	9.1	15.6	10.5		
Power per channel [µW]	18.2	31.5	18.6	32.9		

Full scale ASIC with fast timing capabilities

Timepix4 (Medipix4 collaboration, 2019)

- General purpose ASIC
- 65 nm CMOS
- 512x448 pixels, 55 μm pitch
- Per pixel TDC, shared oscillator (8 pixels)
- TDC resolution 200 ps / 60 ps (bin / rms)
- 160 Gbit/s output bandwidth (16x10)
- 24.7 mm x 28.2 mm

- Timepix4 exists!
- Similarly to Timepix3, it will be our 'tool' for sensor characterisation at the system level
- Complementary to the smaller scale prototypes (e.g. 3x3, 5x5, NxN pixels)

But, not every pixel is the same ...

- If you "zoom in" everything will look grainy
- Example from Timepix3 telescope
- Time bin of 1.56 ns -> binary resolution 450 ps
- TDC bin-to-bin variations
- Pixel-to-pixel time offsets much larger than resolution
- Static offsets and timewalk can be corrected for
- Ultimately we only care about stability But:
- Extra info requires on-chip logic and/or bandwidth
- How to determine tuning parameters?
- Is on-chip correction possible?

System level timing

- We often assume that things simply scale by sqrt(N), e.g. hit to track time, track to vertex
- Correlation of time measurements can easily affect the scaling
 - e.g. due to clocking effects, both on-chip and across detector
- As example, a timing study of our Timepix3 telescope
- Note that the telescope is not really optimised for timing
 - order 1 ns RMS per plane before any corrections
- But correlations due to poor clocking already appeared

plane to plane correlations after intercept corrections

[K. Heijhoff: 2020 JINST 15 P09035]

plane to plane correlations after offline clock corrections

The challenge doesn't stop after the sensor and ASIC

- Data rates
- Powering (in vacuum)
- Cooling
- Mechanics

Data transmission challenge

- Smaller ASIC technologies are very performing
- Low power 28+ Gbits/s serialisers seem feasible in 28 nm
- But 'our' cable technology does not scale in the same way
 - has to be radiation hard, vacuum compatible
- -> bridging the first 0.5 1 meter in vacuum is a challenge
- Large losses in the dielectric

stripline cross section

What can we do about it?

- Get rid of most of the dielectric?
- Air-filled / suspended striplines
- Technically possible, but very expensive

- Multi-level signalling at lower speed?
- e.g. PAM4, probable little/no benefit for us

3 levels -> 33% signal = -9dB

PAM4: -4 dB - 9 dB = -13 dB

compared to -5.5 dB

- Or can/dare we go 'optical' near the ASIC?
- Versatile link (VCSEL) reaches 1 MGy / 10¹⁵ n_{eq}, or Mach Zehnder Modulators

Cooling for Upgrade-II

- VELO (prime) introduced bi-phase CO₂ cooling in HEP
- VELO Upgrade-I: CO₂ cooling via Silicon micro-channel plates
 - Elegant solution, but large micro-channel plates are expensive
- Upgrade-II modules will dissipate more power
 - CO₂ cooling might not run cold enough
 - Bi-phase Krypton could be a possibility

smaller micro-channel plates to reduce cost

3D titanium printed pipes already prototyped for Upgrade-I

Mechanics

- What if in a few years from now (end of R&D phase) there is no sensor that provides sufficient signal after 6x10¹⁶ n_{eq}?
- Considering (bi-)annual replacement of detector
- Major impact for mechanical design
- Detector modules that can swapped during technical stops

Summary

- LHCb is planning another luminosity upgrade (II), to be installed in 2031
- Timing at high lumi is essential to keep the same performance as Upgrade-I
- 4D tracking vs. timing layer is subject to further studies
- Challenges are the (non-uniform) radiation, spatial and temporal resolution, data rate, cooling, online reconstruction, ...
- R&D ramping is up
- Currently in exploratory phase where non of the technologies can be excluded