Pionless effective field theory in
 the flavor SU(3) symmetric limit

Betzalel Bazak

The Racah institute of physics The Hebrew university of Jerusalem

HYP2022 conference Prauge, 28.6.22

Effective Field Theory (EFT)

- Typically in physics we have an "underlying" theory, valid at a mass scale $M_{h i}$, but we want to study processes at momenta $Q \approx M_{l o} \ll M_{h i}$. than the typical QCD mass scale, $M_{Q C D} \approx 1 \mathrm{GeV}$. Effective Field Theorv (EFT) is a framework to const uct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory

Effective Field Theory (EFT)

- Typically in physics we have an "underlying" theory, valid at a mass scale $M_{h i}$, but we want to study processes at momenta $Q \approx M_{l o} \ll M_{h i}$.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{Q C D} \approx 1 \mathrm{GeV}$.
systematically. The high-energy degrees of freedom are integrated out,
while the effective Lagrangian has the same symmetries as the
underlying theory.
The details of the underlying dynamics are contained in the interaction

Effective Field Theory (EFT)

- Typically in physics we have an "underlying" theory, valid at a mass scale $M_{h i}$, but we want to study processes at momenta $Q \approx M_{l o} \ll M_{h i}$.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{Q C D} \approx 1 \mathrm{GeV}$.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory.

Effective Field Theory (EFT)

- Typically in physics we have an "underlying" theory, valid at a mass scale $M_{h i}$, but we want to study processes at momenta $Q \approx M_{l o} \ll M_{h i}$.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{Q C D} \approx 1 \mathrm{GeV}$.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian has the same symmetries as the underlying theory.
- The details of the underlying dynamics are contained in the interaction strengths.

Pionless or Short-Range EFT

- For spinless particles, the two body-sector has a single term at LO,

$$
V_{L O}=a_{1} .
$$

Pionless or Short-Range EFT

- For spinless particles, the two body-sector has a single term at LO,

$$
V_{L O}=a_{1} .
$$

- and another one at NLO,

$$
V_{N L O}=b_{1}\left(p^{2}+p^{\prime 2}\right) .
$$

The NLO term is treated as perturbation.

Pionless or Short-Range EFT

- For spinless particles, the two body-sector has a single term at LO,

$$
V_{L O}=a_{1} .
$$

- and another one at NLO,

$$
V_{N L O}=b_{1}\left(p^{2}+p^{\prime 2}\right)
$$

- The LO term is to be iterated.

Pionless or Short-Range EFT

- For spinless particles, the two body-sector has a single term at LO,

$$
V_{L O}=a_{1} .
$$

- and another one at NLO,

$$
V_{N L O}=b_{1}\left(p^{2}+p^{\prime 2}\right)
$$

- The LO term is to be iterated.

- The NLO term is treated as perturbation.

Three-boson system

Trying to calculate the trimer binding energy one gets the Thomas collapse:

$$
B_{3} \propto \frac{\hbar^{2} \Lambda^{2}}{m}
$$

To stabilize the system, a 3 -body counter term must be introduced at LO

LO: Bedaque, Hammer, and van Kolck, PRL 82, 463 (1999).

Efimov Physics

- Actually we see here the Efimov effect.
- discrete scale invariance:

$$
\lambda_{n}=e^{-\pi n /|s|}
$$

- infinite number of bound states $E_{n}=E_{0} e^{-2 \pi n /\left|s_{0}\right|}$ with $e^{2 \pi /\left|s_{0}\right|} \approx 515$
- Borromean binding

Efimov, Phys. Lett. B 33, 563 (1970)
Review: Naidon and Endo (2017)

Ferlaino and Grimm, Physics 3, 9 (2010)

„EFT potential

- At NLO, a four-body force is needed!

Bazak, Kirscher, König, Pavón Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)

2N
3N

$$
4 \mathrm{~N}
$$

$\mathrm{O}(1)$

?

Lattice QCD

The light hadron spectrum from Lattice QCD

Dürr et al., Science 322, 1224 (2008)

How to let LQCD results out of the box?

- For the two-body case,

$$
B_{2}(L) \approx B_{2}^{\text {free }}+\frac{6 \kappa_{2}\left|\mathcal{A}_{2}\right|^{2}}{\mu_{2} L} e^{-\kappa_{2} L}
$$

M. Lüscher, Commun. Math. Phys. 104, 177 (1986)
\mathcal{A}_{2} is the dimensionless asymptotic normalization coefficient (ANC).
Generalization for two-clusters breaking of N-body system,

S. König and D. Lee, Phys. Lett. B 779, 9 (2018)

How to let LQCD results out of the box?

- For the two-body case,

$$
B_{2}(L) \approx B_{2}^{\text {free }}+\frac{6 \kappa_{2}\left|\mathcal{A}_{2}\right|^{2}}{\mu_{2} L} e^{-\kappa_{2} L}
$$

$$
\text { M. Lüscher, Commun. Math. Phys. 104, } 177 \text { (1986) }
$$

\mathcal{A}_{2} is the dimensionless asymptotic normalization coefficient (ANC).

- Generalization for two-clusters breaking of N-body system,

$$
B_{N}(L)=B_{N}^{\text {free }}+\frac{6 \kappa_{N}\left|\mathcal{A}_{N}\right|^{2}}{\mu_{N} L} e^{-\kappa_{N} L}
$$

S. König and D. Lee, Phys. Lett. B 779, 9 (2018)

...but these are assymptotic formulas!

How large should the box be?

Yaron, Bazak, Schäfer, and Barnea, arXiv:2206.04497
Values are extracted from three adjacent boxes.

$$
\Delta B_{2}=\frac{\kappa_{2}\left|\mathcal{A}_{2}\right|^{2}}{\mu_{2} L}(\overbrace{6 e^{-\kappa_{2} L}}^{|\mathbf{n}|^{2}=1}+\overbrace{\frac{12}{\sqrt{2}} e^{-\sqrt{2} \kappa_{2} L}}^{|\mathbf{n}|^{2}=2}+\overbrace{\frac{|\mathbf{8}|^{2}}{\sqrt{3}} e^{-\sqrt{3} \kappa_{2} L}}^{\overbrace{}^{2}}+\ldots)
$$

Extrapolation of LQCD results

Free-space vs. Lüscher formula results using boxes with $L=\{6,8,10\} \mathrm{fm}$.

	Free-space		Lüscher	
N	$B_{N}^{\text {free }}[\mathrm{MeV}]$	ANC	$B_{N}^{\text {free }}[\mathrm{MeV}]$	ANC
2	2.2246	1.40	$2.0(8)$	$1.3(2)$
3	8.482	2.024	$9.4(9)$	$2.2(1)$
4	32.48	6.00	$32.4(9)$	$4.9(1)$

- Alternatively, one can fit effective field theory directly to the results in finite boxes.
- The EFT is then solved in free space to get the physical values.

Eliyahu, Bazak, and Barnea, Phys. Rev. C 102, 044003 (2020). W. Detmold and P. E. Shanahan, Phys. Rev. D 103, 074503 (2021).

EFT for LQCD: extrapolation

Symbols: NPLQCD results for $m_{\pi}=806 \mathrm{MeV}$, Beane et al., Phys. Rev. D 87, 034506 (2013). Curves: đEFT results, Eliyahu, Bazak, and Barnea, Phys. Rev. C 102, 044003 (2020).

Flavor SU(3) symmerty of quarks

from wikipedia

Two baryon states

- flavor: $8 \otimes 8=1_{S} \oplus 8_{S} \oplus 2_{S} \oplus 8_{A} \oplus 10_{A} \oplus \overline{10}_{A}$
- spin: $2 \otimes 2=1_{A} \oplus 3_{S}$

Wagman et al. (NPLQCD Collaboration) Phys. Rev. D 96, 114510 (2017)

Pionless EFT for $\operatorname{SU}(3) \otimes \mathrm{SU}(2)$ case

- We need potential consistent with $\mathrm{SU}(3) \otimes \mathrm{SU}(2)$ symmetries.
- Use the identity + Casimir operators!

$$
\left\{\hat{1}, \hat{C}_{2}, \hat{C}_{3}\right\} \otimes\left\{\hat{1}, \hat{S}^{2}\right\}
$$

- \hat{C}_{3} e.v. is 0 for all symmetric irreps $1,8_{s}, 27$.
- $\left\{\hat{1}, \hat{S}^{2}\right\} \longrightarrow\left\{\hat{P}_{S}, \hat{P}_{T}\right\}$ therefore $\hat{C}_{3} \hat{P}_{S}=0$; only 5 parameters are needed! Dover and Feshbach, Ann. Phys. 198, 321 (1990)
- Other approaches find 6 operators. Savage and Wise, Phys. Rev. D 53, 349 (1996); ...

NPLQCD calculations for SU(3) flavor symmetry

- In nature, $m_{u} \approx m_{d} \ll m_{s}$ $m_{\pi} \approx 140 \mathrm{MeV}$ $m_{N} \approx 939 \mathrm{MeV}$.
- SU(3) flavor symmetry:
$m_{u}=m_{d}=m_{s}$ $m_{\pi} \approx 806 \mathrm{MeV}$ $m_{N} \approx 1634 \mathrm{MeV}$.

NPLQCD Collaboration, Phys. Rev. D 87, 034506 (2013).

Results: two baryon systems

- flavor: $8 \otimes 8=1_{S} \oplus 8_{S} \oplus 2_{S} \oplus 8_{A} \oplus 10_{A} \oplus \overline{10}_{A}$
- spin: $2 \otimes 2=1_{A} \oplus 3_{S}$

8_{S} results is a prediction!

Results: three baryon systems

- flavor:

$$
\begin{aligned}
8 \otimes 8 \otimes 8 & =1_{S} \oplus 8_{S} \oplus \overline{10}_{S} \oplus 10_{S} \oplus 27_{S} \oplus 64_{S} \oplus \\
& \oplus 27_{A} \oplus 10_{A} \oplus \overline{10}_{A} \oplus 8_{A} \oplus 1_{A} \oplus \\
& \oplus 4 \cdot 27_{M} \oplus 2 \cdot 35_{M} \oplus 2 \cdot \overline{35}_{M} \oplus 2 \cdot 10_{M} \oplus 2 \cdot \overline{10}_{M} \oplus 6 \cdot 8_{M}
\end{aligned}
$$

- spin: $2 \otimes 2 \otimes 2=2 \cdot 2_{M} \oplus 4_{S}$

$\lambda=20 \mathrm{fm}^{-1} ; L \longrightarrow \infty$ extrapolation

$\lambda \longrightarrow \infty$ extrapolation

There are 14 physicaly allowed irreps; we don't have enough data to fit all

Results: four baryon systems

- flavor:

$$
\begin{aligned}
\mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} & =\mathbf{1 2 5} \oplus 3 \cdot \mathbf{8 1} \oplus 3 \cdot \mathbf{8 1} \oplus \mathbf{1 2} \cdot \mathbf{6 4} \oplus \mathbf{1 5} \cdot \overline{\mathbf{3 5}} \oplus \mathbf{1 5} \cdot \mathbf{3 5} \oplus \\
& \oplus 2 \cdot \mathbf{2 8} \oplus \mathbf{2} \cdot \mathbf{\mathbf { 2 8 }} \oplus \oplus 33 \cdot \mathbf{2 7} \oplus \mathbf{2 0} \cdot \mathbf{1 0} \oplus \mathbf{2 0} \cdot \overline{\mathbf{1 0}} \oplus 32 \cdot \mathbf{8} \oplus 8 \cdot \mathbf{1}
\end{aligned}
$$

- spin: $2 \otimes 2 \otimes 2 \otimes 2=2 \cdot 1 \oplus 3 \cdot 3 \oplus 5$

$\lambda=20 \mathrm{fm}^{-1} ; L \longrightarrow \infty$ extrapolation

$\lambda \longrightarrow \infty$ extrapolation
- The symmetry considerations becomes a bit cumbersome...
- We did only the simplest $\overline{28}$ irrep, i.e. ${ }^{4} \mathrm{He}$.
- NLO calculations are important here!

Conclusion

- $\not \approx E F T$ and its power counting were introduced.
- LQCD results should be done in quite large boxes to enable accurate extrapolation with Lüscher formula.
- $\pi E F T$ can be used to extrapolate LQCD results to infinite volume and to heavier nuclei.
- NPLQCD results at the flavor symmetric point was used to fit the two-body π EFT potential, thus predicting the 8_{S} irrep.
- More data is needed to fit all 14 three-body channels.
- BB, Johannes Kirscher, Sebastian König, Manuel Pavón Valderrama, Nir Barnea, and Bira van Kolck, Phys. Rev. Lett. 122, 143001 (2019).
- Moti Eliyahu, BB, and Nir Barnea, Phys. Rev. C 102, 044003 (2020).
- Roee Yaron, BB, Martin Schäfer, and Nir Barnea, arXiv:2206.04497.
- BB and Martin Schäfer, in preparation.
- Michael Leveson, Roee Yaron, Moti Eliyahu, Nir Barnea and BB, in preparation.

