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Effective Field Theory (EFT)

Typically in physics we have an “underlying” theory, valid at a mass
scale Mhi, but we want to study processes at momenta Q ≈ Mlo ≪ Mhi.
For example, nuclear structure involves energies that are much smaller
than the typical QCD mass scale, MQCD ≈ 1 GeV.
Effective Field Theory (EFT) is a framework to construct the interactions
systematically. The high-energy degrees of freedom are integrated out,
while the effective Lagrangian has the same symmetries as the
underlying theory.
The details of the underlying dynamics are contained in the interaction
strengths.
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π −→ + · · ·
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Pionless or Short-Range EFT

For spinless particles, the two body-sector has a single term at LO,

VLO = a1.

and another one at NLO,

VNLO = b1(p2 + p′2).

The LO term is to be iterated.

The NLO term is treated as perturbation.
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Three-boson system

Trying to calculate the trimer binding energy one gets the Thomas collapse:

B3 ∝
h̄2Λ2
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To stabilize the system, a
3-body counter term must be
introduced at LO

LO: Bedaque, Hammer, and van Kolck, PRL 82, 463 (1999).
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Efimov Physics

Actually we see here the Efimov
effect.
discrete scale invariance:
λn = e−πn/|s|

infinite number of bound states
En = E0e−2πn/|s0| with
e2π/|s0| ≈ 515
Borromean binding

Efimov, Phys. Lett. B 33, 563 (1970)
Review: Naidon and Endo (2017)

Ferlaino and Grimm, Physics 3, 9 (2010)
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/πEFT potential

At NLO, a four-body force is needed!
Bazak, Kirscher, König, Pavón Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)

Hammer, König and van Kolck, Rev. Mod. Phys. 92, 025004 (2020)
See Nir’s talk tommorow!
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Lattice QCD

APS/Alan Stonebraker
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The light hadron spectrum from Lattice QCD

Dürr et al., Science 322, 1224 (2008)

Betzalel Bazak (HUJI) /πEFT in the flavor SU(3) symmetric limit 8 / 21



How to let LQCD results out of the box?

For the two-body case,

B2(L) ≈ Bfree
2 +

6κ2|A2|2
µ2L

e−κ2L

M. Lüscher, Commun. Math. Phys. 104, 177 (1986)

A2 is the dimensionless asymptotic normalization coefficient (ANC).

Generalization for two-clusters breaking of N-body system,

BN(L) = Bfree
N +

6κN|AN|2
µNL

e−κNL

S. König and D. Lee, Phys. Lett. B 779, 9 (2018)
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...but these are assymptotic formulas!
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Yaron, Bazak, Schäfer, and Barnea, arXiv:2206.04497
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How large should the box be?
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Yaron, Bazak, Schäfer, and Barnea, arXiv:2206.04497
Values are extracted from three adjacent boxes.

∆B2 =
κ2|A2|2

µ2L
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Extrapolation of LQCD results

Free-space vs. Lüscher formula results using boxes with L = {6, 8, 10} fm.

Free-space Lüscher
N Bfree

N [MeV] ANC Bfree
N [MeV] ANC

2 2.2246 1.40 2.0(8) 1.3(2)
3 8.482 2.024 9.4(9) 2.2(1)
4 32.48 6.00 32.4(9) 4.9(1)

Alternatively, one can fit effective field theory directly to the results in
finite boxes.
The EFT is then solved in free space to get the physical values.

Eliyahu, Bazak, and Barnea, Phys. Rev. C 102, 044003 (2020).
W. Detmold and P. E. Shanahan, Phys. Rev. D 103, 074503 (2021).
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EFT for LQCD: extrapolation
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Symbols: NPLQCD results for mπ = 806MeV, Beane et al., Phys. Rev. D 87, 034506 (2013).
Curves: /πEFT results, Eliyahu, Bazak, and Barnea, Phys. Rev. C 102, 044003 (2020).
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Flavor SU(3) symmerty of quarks

from wikipedia
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Two baryon states

flavor: 8 ⊗ 8 = 1S ⊕ 8S ⊕ 27S ⊕ 8A ⊕ 10A ⊕ 10A

spin: 2 ⊗ 2 = 1A ⊕ 3S

Wagman et al. (NPLQCD Collaboration) Phys. Rev. D 96, 114510 (2017)
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Pionless EFT for SU(3)⊗SU(2) case

We need potential consistent with SU(3)⊗SU(2) symmetries.
Use the identity + Casimir operators!

{1̂, Ĉ2, Ĉ3} ⊗ {1̂, Ŝ2}

Ĉ3 e.v. is 0 for all symmetric irreps 1, 8S, 27.
{1̂, Ŝ2} −→ {P̂S, P̂T} therefore Ĉ3P̂S = 0; only 5 parameters are needed!
Dover and Feshbach, Ann. Phys. 198, 321 (1990)

Other approaches find 6 operators.
Savage and Wise, Phys. Rev. D 53, 349 (1996); ...
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NPLQCD calculations for SU(3) flavor symmetry
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NPLQCD Collaboration, Phys. Rev. D 87, 034506 (2013).

In nature,
mu ≈ md ≪ ms
mπ ≈ 140 MeV
mN ≈ 939 MeV.

SU(3) flavor
symmetry:
mu = md = ms
mπ ≈ 806 MeV
mN ≈ 1634 MeV.
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Results: two baryon systems

flavor: 8 ⊗ 8 = 1S ⊕ 8S ⊕ 27S ⊕ 8A ⊕ 10A ⊕ 10A

spin: 2 ⊗ 2 = 1A ⊕ 3S
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λ = 20 fm−1; L −→ ∞ extrapolation λ −→ ∞ extrapolation

8S results is a prediction!
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Results: three baryon systems

flavor:
8 ⊗ 8 ⊗ 8 = 1S ⊕ 8S ⊕ 10S ⊕ 10S ⊕ 27S ⊕ 64S⊕

⊕ 27A ⊕ 10A ⊕ 10A ⊕ 8A ⊕ 1A⊕
⊕ 4 · 27M ⊕ 2 · 35M ⊕ 2 · 35M ⊕ 2 · 10M ⊕ 2 · 10M ⊕ 6 · 8M

spin: 2 ⊗ 2 ⊗ 2 = 2 · 2M ⊕ 4S
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λ = 20 fm−1; L −→ ∞ extrapolation λ −→ ∞ extrapolation
There are 14 physicaly allowed irreps; we don’t have enough data to fit all
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Results: four baryon systems

flavor:
8 ⊗ 8 ⊗ 8 ⊗ 8 = 125 ⊕ 3 · 81 ⊕ 3 · 81 ⊕ 12 · 64 ⊕ 15 · 35 ⊕ 15 · 35⊕

⊕ 2 · 28 ⊕ 2 · 28 ⊕⊕33 · 27 ⊕ 20 · 10 ⊕ 20 · 10 ⊕ 32 · 8 ⊕ 8 · 1

spin: 2 ⊗ 2 ⊗ 2 ⊗ 2 = 2 · 1 ⊕ 3 · 3 ⊕ 5
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The symmetry considerations becomes a bit cumbersome...
We did only the simplest 28 irrep, i.e. 4He.
NLO calculations are important here!
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Conclusion

/πEFT and its power counting were introduced.
LQCD results should be done in quite large boxes to enable accurate
extrapolation with Lüscher formula.
/πEFT can be used to extrapolate LQCD results to infinite volume and to
heavier nuclei.
NPLQCD results at the flavor symmetric point was used to fit the
two-body /πEFT potential, thus predicting the 8S irrep.
More data is needed to fit all 14 three-body channels.

1 BB, Johannes Kirscher, Sebastian König, Manuel Pavón Valderrama, Nir
Barnea, and Bira van Kolck, Phys. Rev. Lett. 122, 143001 (2019).

2 Moti Eliyahu, BB, and Nir Barnea, Phys. Rev. C 102, 044003 (2020).
3 Roee Yaron, BB, Martin Schäfer, and Nir Barnea, arXiv:2206.04497.
4 BB and Martin Schäfer, in preparation.
5 Michael Leveson, Roee Yaron, Moti Eliyahu, Nir Barnea and BB, in

preparation.
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