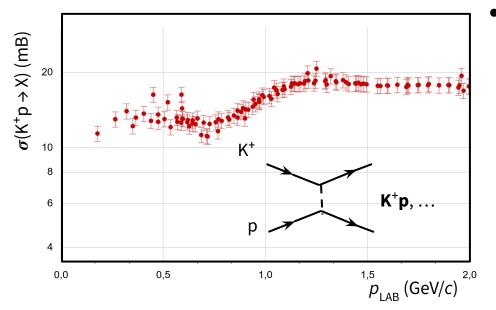

Constraining the $\overline{K}N$ coupled channel dynamics using femtoscopic correlations with ALICE at the LHC

14th International Conference on Hypernuclear and Strange Particle Physics

KN and $\overline{K}N$ interactions and how to study them


- Kaon (K) nucleon (N) and anti-Kaon nucleon ($\bar{K}N$) interactions are fundamental for the study of low-energy QCD
 - $\sim K = K^+ (u\bar{s}), K^0(d\bar{s}); \bar{K} = K^-(s\bar{u}), \bar{K}^0 (s\bar{d})$
- Traditionally, these interactions are studied by <u>scattering experiments</u> at low energies
 - few experimental measurements with big uncertainties and not at low-energy p_{lab} < 50 MeV/c

K⁺p interaction

K⁺p interaction

- Repulsive (due to Coulomb and strong interactions)
- No coupled channels
- No resonances
 - well known [1]

[1] K. Aoki and D. Jido, PTEP 2019 no. 1, (2019) 013D01 (arXiv:1806.00925 [nucl-th])

30/06/2022

K⁻p interaction

30/06/2022

K⁻**p** interaction

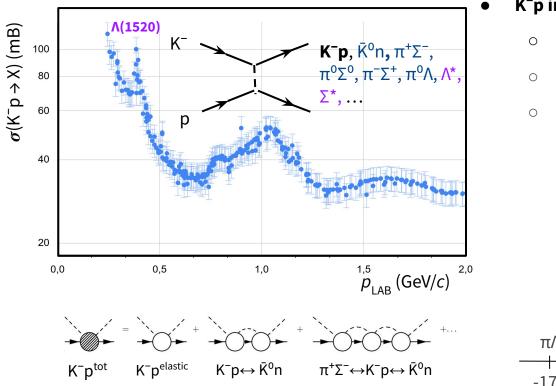
Ramona Lea - HYP 2022

- deeply attractive
- several resonances
- several **coupled channels** (\bar{K}^0n , $\pi^+\Sigma^-$, $\pi^0\Sigma^0$, $\pi^{-}\Sigma^{+},\pi^{0}\Lambda)$

K⁻p

systems close to the K⁻p threshold and with the same quantum numbers

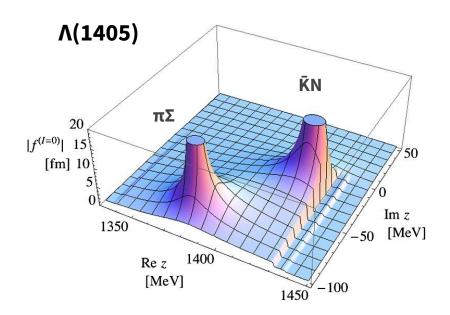
E(MeV)


3

Ē⁰n

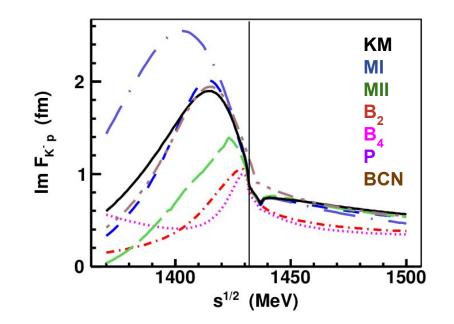
+5

K⁻p interaction

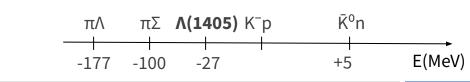


K⁻**p** interaction

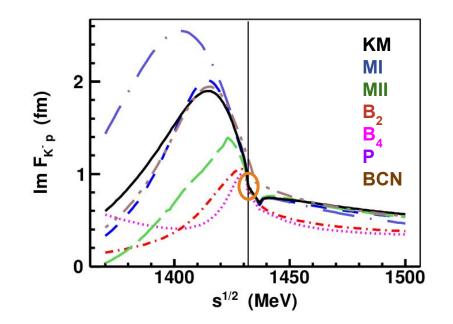
- deeply attractive
- several resonances
- several **coupled channels** (\bar{K}^0n , $\pi^+\Sigma^-$, $\pi^0\Sigma^0$, $\pi^{-}\Sigma^{+},\pi^{0}\Lambda$
 - systems close to the K⁻p threshold and with the same quantum numbers
 - $\bar{K}N \leftrightarrow \pi\Sigma$ dynamics leads to the formation of the **Λ(1405)**, ~27 MeV below K⁻p threshold



- Nature of Λ(1405): dynamically generated resonance
 - Models based on below-threshold extrapolations
 - positions of pole are model dependent (relative contributions not measured experimentally)

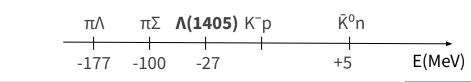


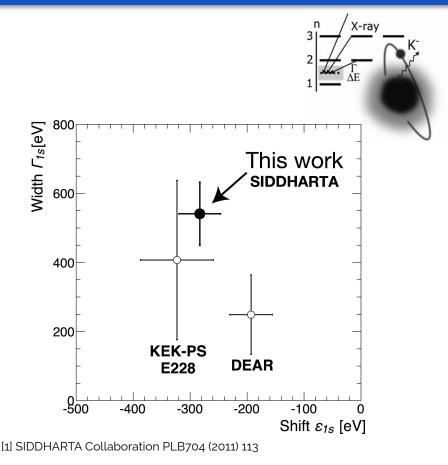
- Nature of Λ(1405): dynamically generated resonance
 - Models based on below-threshold extrapolations
 - positions of pole are model dependent (relative contributions not measured experimentally)
 - state-of-the-art chiral models (*χ*EFT) are in agreement above threshold
 - large discrepancies in the region below threshold

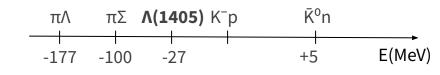

A. Cieplý et al., arxiv:2001.08621

30/06/2022

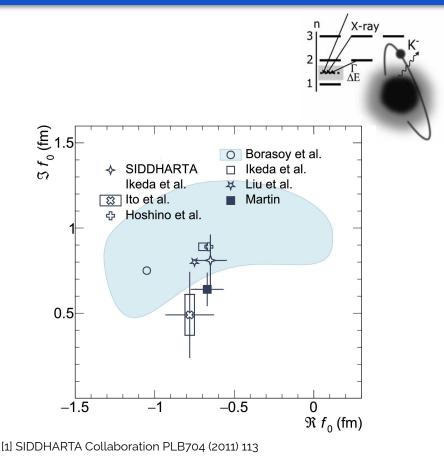
- KM Y. Ikeda, et al., NPA 881 (2012) 98
- MI , MII Z. H. Guo, et al., PRC 87 (2013) 035202
- B2 , B4 M. Mai, et al., EPJ A 51 (2015) 30
- P A. C., J. Smejkal, NPA 881 (2012) 115
- BCN A. Feijoo, et al., PRC 99 (2019) 035211

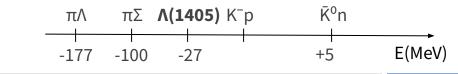





- Nature of Λ(1405): dynamically generated resonance
 - Models based on below-threshold extrapolations
 - positions of pole are model dependent (relative contributions not measured experimentally)
 - state-of-the-art chiral models (*χ*EFT) are in agreement above threshold
 - large discrepancies in the region below threshold

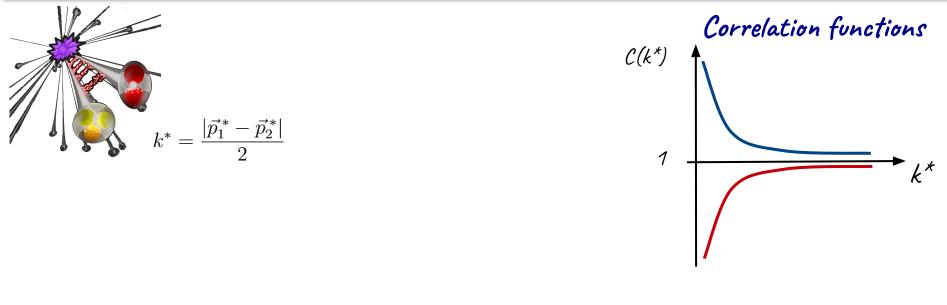
- A. Cieplý et al., arxiv:2001.08621
 - KM Y. Ikeda, et al., NPA 881 (2012) 98
 - MI , MII Z. H. Guo, et al., PRC 87 (2013) 035202
 - B2 , B4 M. Mai, et al., EPJ A 51 (2015) 30
 - P A. C., J. Smejkal, NPA 881 (2012) 115
 - BCN A. Feijoo, et al., PRC 99 (2019) 035211




- Nature of Λ(1405): dynamically generated resonance
 - Models based on below-threshold extrapolations
 - positions of pole are model dependent (relative contributions not measured experimentally)
 - state-of-the-art chiral models (*χ*EFT) are in agreement above threshold
 - large discrepancies in the region below threshold
 - constraint at threshold by SIDDARTHA measurement [1] of kaonic hydrogen 1s level shift and width

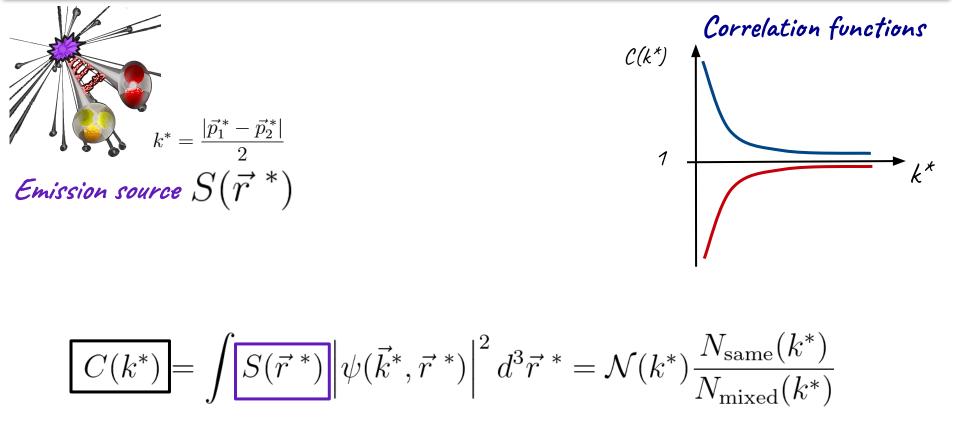
Ramona Lea - HYP 2022

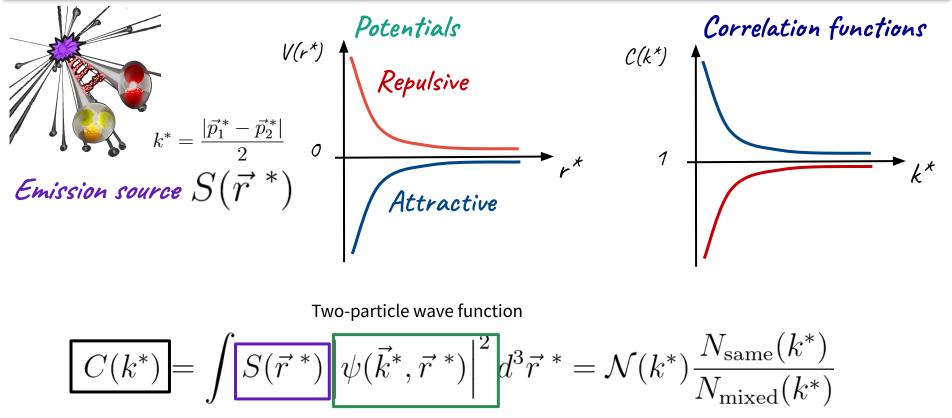
- Nature of $\Lambda(1405)$: dynamically generated resonance
 - Models based on below-threshold extrapolations
 - positions of pole are model dependent (relative contributions not measured experimentally)
 - state-of-the-art chiral models (*χ*EFT) are in agreement above threshold
 - large discrepancies in the region below threshold
 - constraint at threshold by SIDDARTHA measurement [1] of kaonic hydrogen 1s level shift and width
 - scattering length


Two-particle momentum correlation measured with ALICE at the LHC

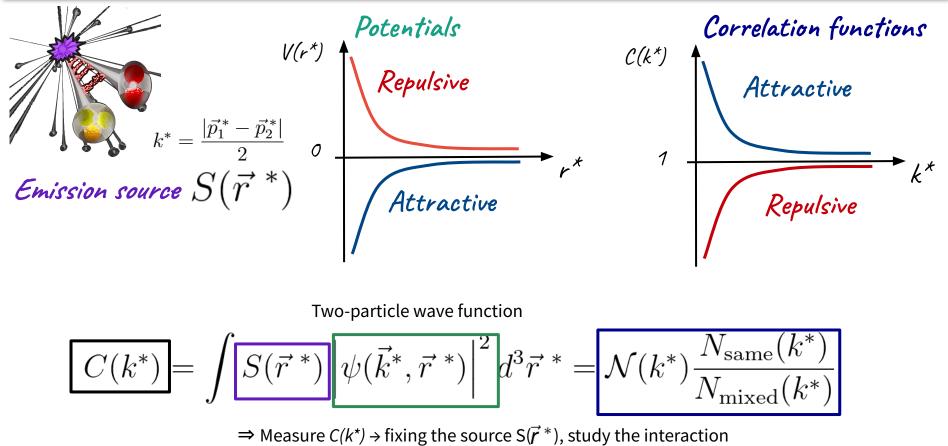
- KN and $\overline{K}N$ interaction
 - ALICE Collaboration PRL 124 (2020) 9, 092301
 - ALICE Collaboration PLB 822 (2021) 136708
 - ALICE Collaboration arXiv: 2205.15176

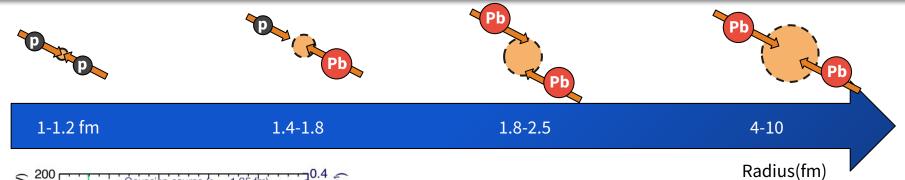
• and other interactions:

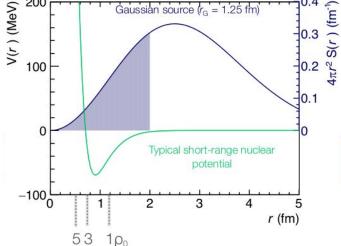

- pp, pA, AA: ALICE Collaboration PRC 99(2019)
- ΛΛ: ALICE Collaboration PLB 797 (2019) 134822
- o pE: ALICE Collaboration PRL 123 (2019) 134822
- pΣ^o:ALICE Collaboration PLB 805 (2020) 135419
- o pΩ: ALICE Collaboration Nature 588 (2020) 232-238
- p**q**: ALICE Collaboration PRL 127 (2021) 172301
- B-**B**:ALICE Collaboration PLB B 829 (2022) 137060
- pΛ: ALICE Collaboration arXiv:2104.04427
- pD: ALICE Collaboration arXiv:2201.05352
- $\Lambda \Xi$: ALICE Collaboration arXiv:2204.10258
- ppp and pp Λ : ALICE Collaboration arXiv:2206.03344



$$C(k^*) = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

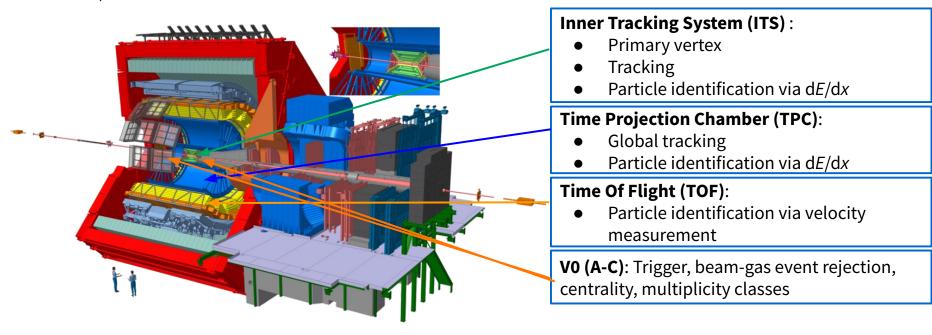






30/06/2022

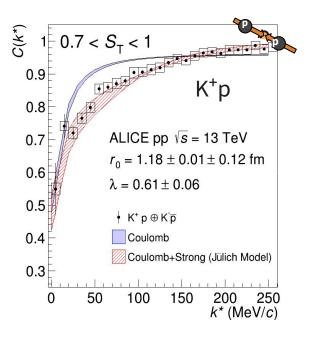
... from small to large systems


• By changing the colliding system it is possible to probe interaction distances ranging from ~1 fm up to ~10 fm

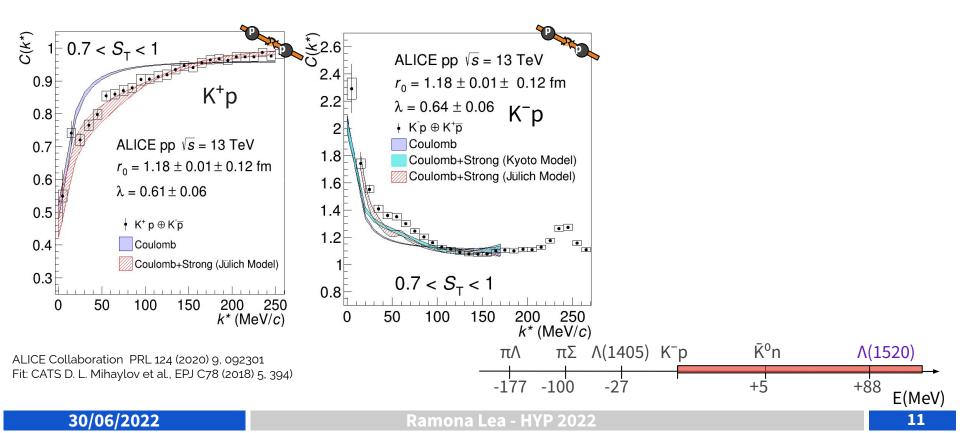
ALICE

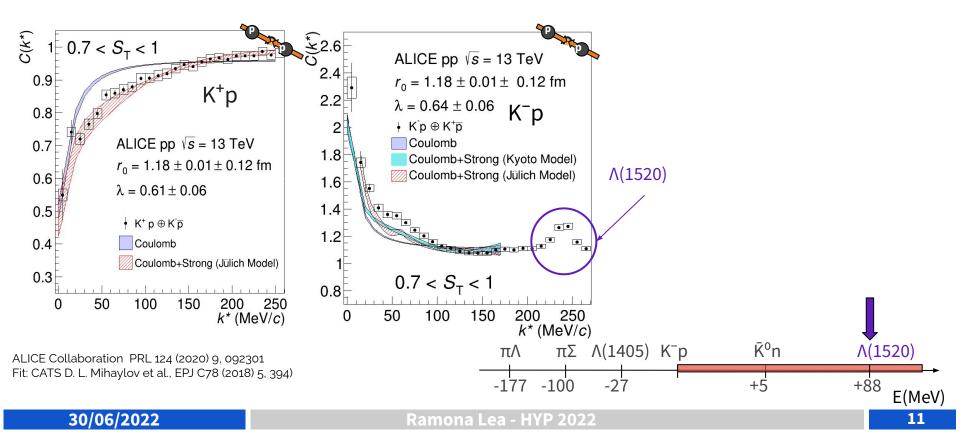
ALICE

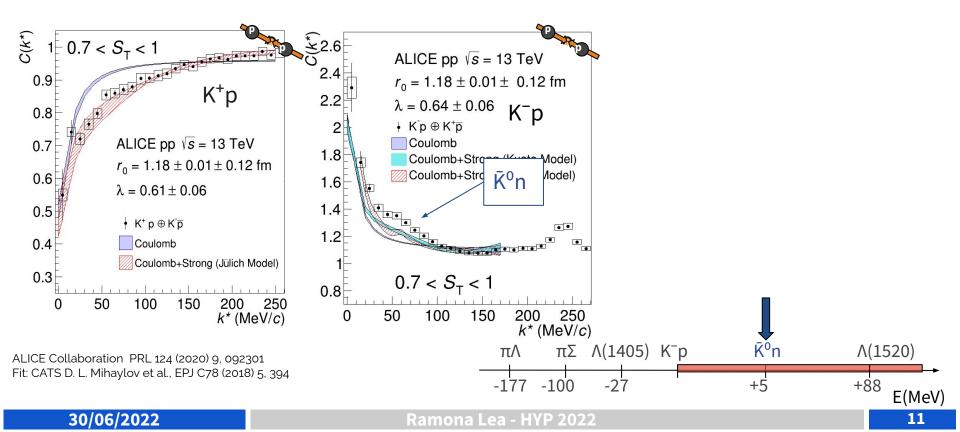
ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (d*E*/d*x*), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade).


Analysis Details

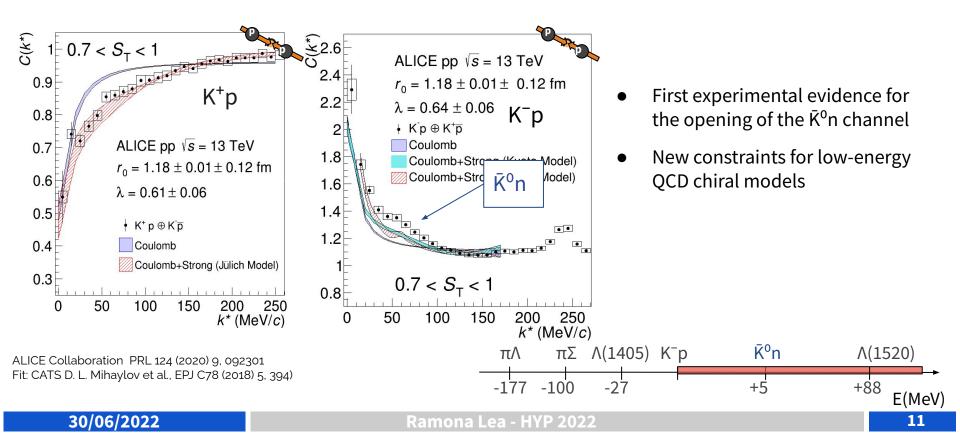
- Protons and Kaons are identified combining the TPC + TOF informations (3σ cut)
 - Pure sample (~ 99% purity) of Kaons and Protons in the considered p_{τ} interval
 - Kaons : $0.15 < p_T < 1.4 \text{ GeV}/c$
 - Protons: $0.40 < p_{T} < 3.0 \text{ GeV}/c$
- Data Sample:
 - pp collisions $\sqrt{s} = 13 \text{ TeV} (\sim 1.0 \times 10^9 \text{ MB events})$
 - p-Pb collisions $\sqrt{s_{_{NN}}}$ = 5.02 TeV (~8.0×10⁸ MB event in 0–100%) → 3 centrality intervals
 - Pb–Pb collisions $\sqrt{s_{NN}}$ = 5.02 TeV (~6.5×10⁷ MB events in 60–90%) → 3 centrality intervals
- Events have been divided into "transverse sphericity" classes [1] to reduce the non-femtoscopic background

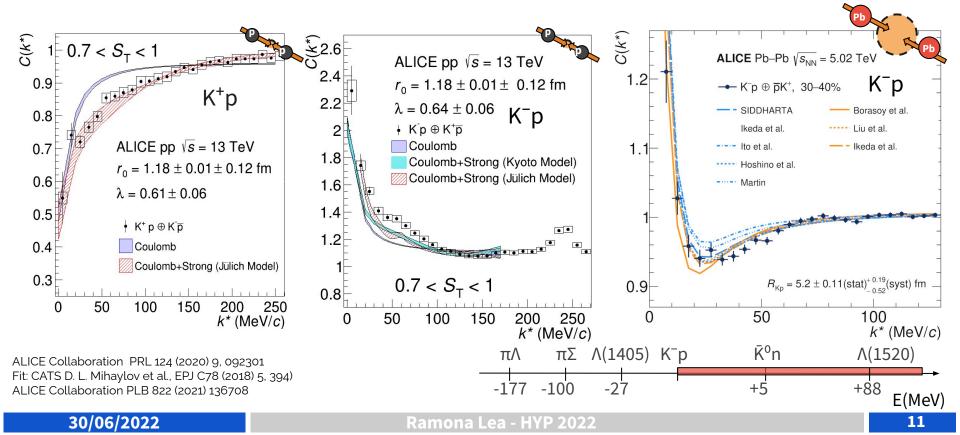

Two-particle momentum correlation measured with ALICE at the LHC



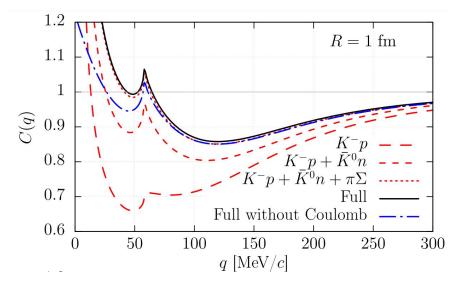

ALICE Collaboration PRL 124 (2020) 9, 092301 Fit: CATS D. L. Mihaylov et al., EPJ C78 (2018) 5, 394)

- The Coulomb-only potential is not able to describe K⁺p interaction and the introduction of the strong potential is needed to fit the data:
 - CFs are sensitive to the strong interaction


ALICE

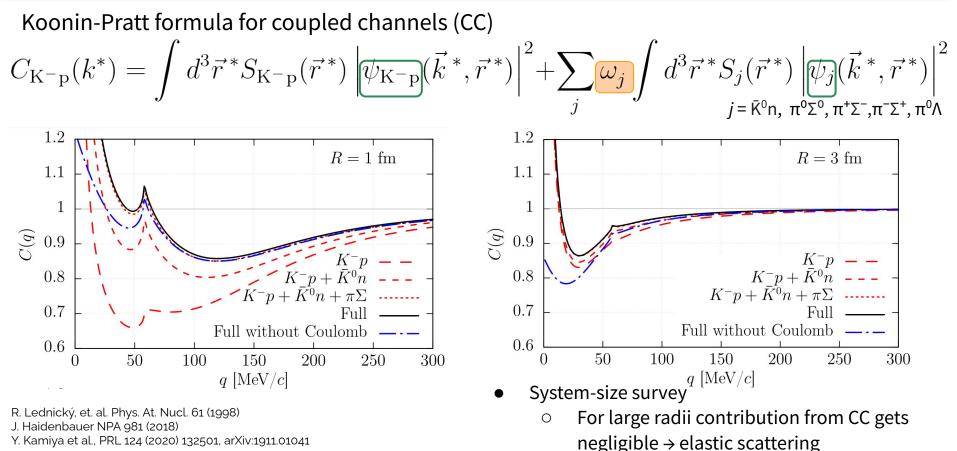


ALICE



K⁻p interaction: improved chiral model

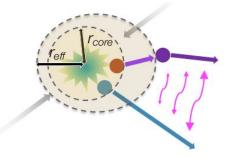
Koonin-Pratt formula for coupled channels (CC) $C_{\mathrm{K}^{-}\mathrm{p}}(k^{*}) = \int d^{3}\vec{r}^{*}S_{\mathrm{K}^{-}\mathrm{p}}(\vec{r}^{*}) \left| \psi_{\mathrm{K}^{-}\mathrm{p}}(\vec{k}^{*},\vec{r}^{*}) \right|^{2} + \sum_{j} \omega_{j} \int d^{3}\vec{r}^{*}S_{j}(\vec{r}^{*}) \left| \psi_{j}(\vec{k}^{*},\vec{r}^{*}) \right|^{2}$ $= \bar{\kappa}^{0}\mathrm{n}, \pi^{0}\Sigma^{0}, \pi^{+}\Sigma^{-}, \pi^{-}\Sigma^{+}, \pi^{0}\Lambda$

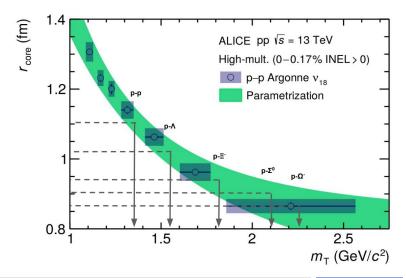

- Coupled channel are short-range features of the strong interaction
 - the shape and strength of the correlation function are modified at small distances
 - Improved Kyoto chiral model to describe CC potential V_i
- Conversion weights (ω_i)
 - control CC contribution
 - depend on primary yield and kinematics

R. Lednicky, et. al. Phys. At. Nucl. 61 (1998) J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501, arXiv:1911.01041

30/06/2022

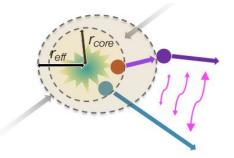
K⁻p interaction: improved chiral model


Y. Kamiya et al., PRL 124 (2020) 132501, arXiv:1911.01041


30/06/2022

The emitting source in small colliding systems

- Data-driven analysis on p-p and p-Λ pairs
 - Possible presence of collective effects $\rightarrow m_{\tau}$ scaling of the core radius
 - \circ ~ Contribution of strongly decaying resonances with ct ~1 fm (*)
- Common universal core source for baryons


ALICE Collaboration PLB 811 (2020) 135849

30/06/2022

The emitting source in small colliding systems

ALICE

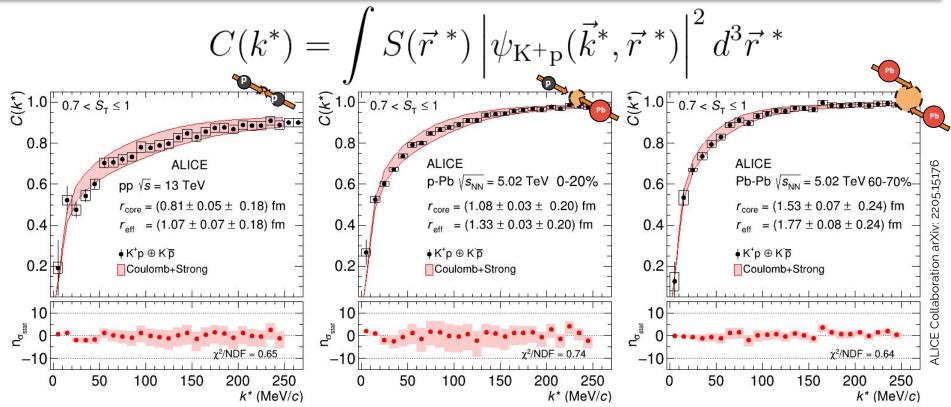
- Data-driven analysis on p-p and p-A pairs
 - Possible presence of collective effects $\rightarrow m_{\tau}$ scaling of the core radius
 - \circ Contribution of strongly decaying resonances with ct ~1 fm (*)
- Common universal core source for baryons
- What about meson-baryon pairs?
 - K⁺p interaction is well known \rightarrow extract r_{core} for Kp pairs
 - For small systems:
 - build effective sources for Kp(\bar{K}^0 n) and one for $\pi\Sigma(\pi\Lambda)$ pairs using different resonances

$$C(k^*) = \int S(\vec{r}^*) \left| \psi_{\mathrm{K^+p}}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^*$$

$$C(k^*) = \int S(\vec{r}^*) \left[\psi_{\mathrm{K^+p}}(\vec{k}^*, \vec{r}^*) \right]^2 d^3 \vec{r}^*$$

Potential based on the scattering amplitude in chiral SU(3) dynamics [1,2]

[1] K. Aoki and D. Jido, PTEP 2019 no. 1, (2019) 013D01 [2] K. Miyahara, et al, PRC 98 no. 2, (2018) 025201



$$C(k^*) = \int S(\vec{r}^*) \left| \psi_{\mathrm{K}^+\mathrm{p}}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^*$$

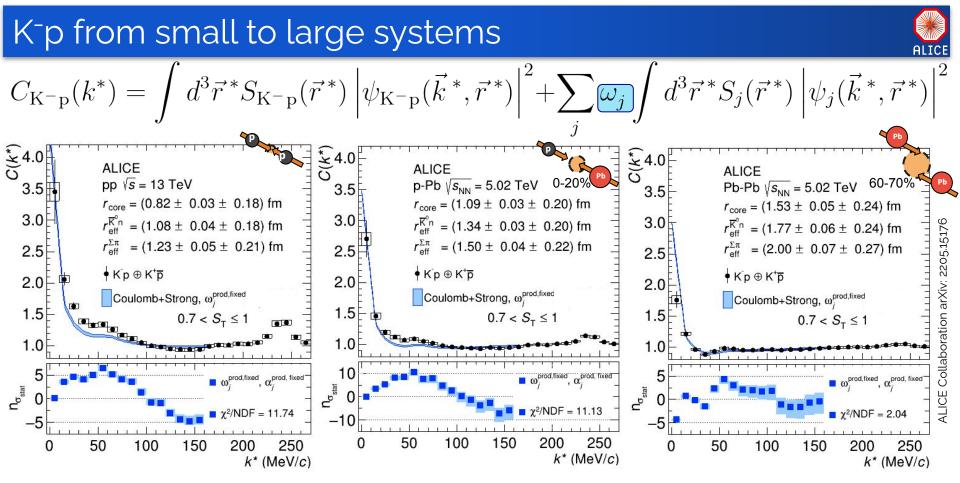
Gaussian core + effects of short-lived resonances via a dedicated Monte Carlo procedure

The data are well reproduced by the assumed K^+p interaction and different r_{core} are extracted

Fit: CATS D. L. Mihaylov et al., EPJ C78 (2018) 5, 394

30/06/2022

K⁻p from small to large systems



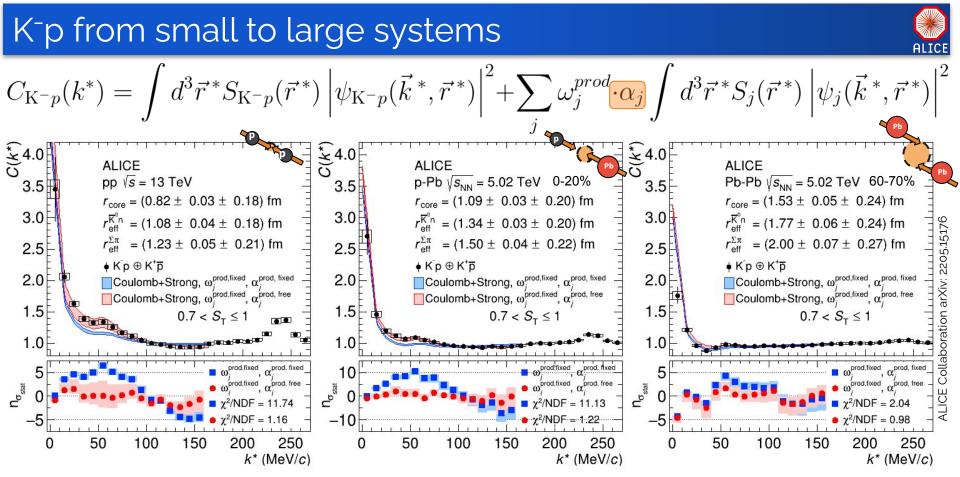
$$C_{\rm K^-p}(k^*) = \int d^3 \vec{r} \, {}^*S_{\rm K^-p}(\vec{r}\,{}^*) \left| \psi_{\rm K^-p}(\vec{k}\,{}^*,\vec{r}\,{}^*) \right|^2 + \sum_j \omega_j \int d^3 \vec{r} \, {}^*S_j(\vec{r}\,{}^*) \left| \psi_j(\vec{k}\,{}^*,\vec{r}\,{}^*) \right|^2$$

Each coupled channel is accounted in the ω_i weights

- primary production yields fixed from thermal model (Thermal-FIST) [1]
- estimate amount of pairs in kinematic region sensitive to final state interactions
- distribute particles according to blast-wave model [2,3,4]
- normalize to expected yield of K⁻p

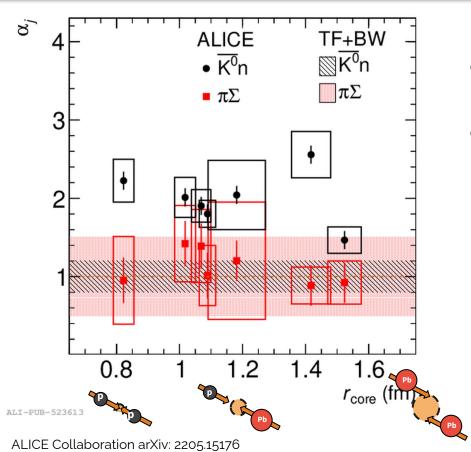
V. Vovchenko et al., PRC 100 no. 5 (2019)
 E. Schnedermann et al., PRC 48 (1993)
 ALICE Collaboration, PLB 728 (2014)
 ALICE Collaboration, PRC 101 no. 4 (2020)

State-of-the art Kyoto Model is not able to describe the data from small to large source size


30/06/2022

K⁻p from small to large systems

$$C_{\mathrm{K}^{-}p}(k^{*}) = \int d^{3}\vec{r}^{*}S_{\mathrm{K}^{-}p}(\vec{r}^{*}) \left| \psi_{\mathrm{K}^{-}p}(\vec{k}^{*},\vec{r}^{*}) \right|^{2} + \sum_{j} \omega_{j}^{prod} \alpha_{j} \int d^{3}\vec{r}^{*}S_{j}(\vec{r}^{*}) \left| \psi_{j}(\vec{k}^{*},\vec{r}^{*}) \right|^{2}$$



A correction factor α_i is introduced to quantify the model-to-data deviation

30/06/2022

K⁻p from small to large systems

30/06/2022

- Unique constraint and direct access to $K^-p \leftrightarrow \overline{K}^0n$ and $K^-p \leftrightarrow \pi\Sigma$ dynamics
- $\alpha_{\bar{k}^0-n}$ deviates from unity:

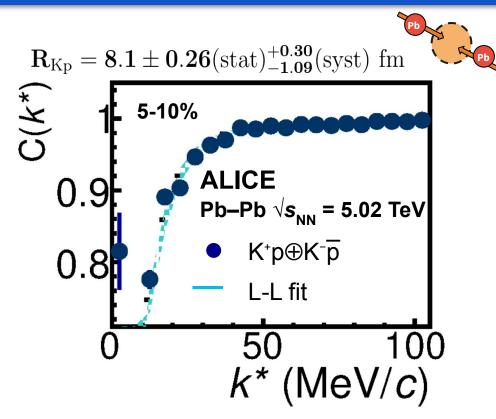
Ramona Lea - HYP 2022

- $K^-p \leftrightarrow \bar{K}^0$ n currently implemented in Kyoto χ EFT is too weak
- fine tuning of Kyoto χEFT is needed and data from hadron-hadron collisions have to be taken into account

18

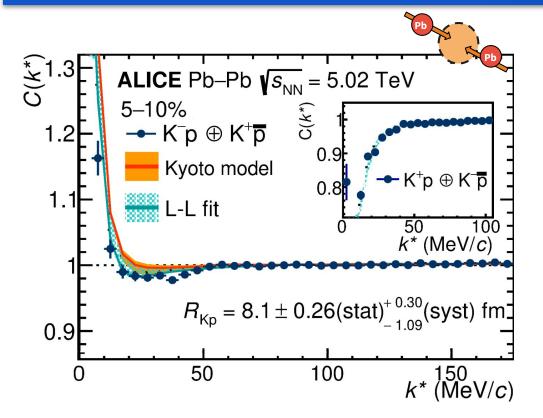
- Momentum correlation technique applied to data collected at the LHC in different collision systems
 - Unique way to access KN and K̄N interaction: New constraints for low-energy QCD chiral models
 - First experimental access to coupled channels dynamics ($K^-p \leftrightarrow \bar{K}^0n$, $K^-p \leftrightarrow \pi\Sigma$, $K^-p \leftrightarrow \pi\Lambda$)
 - Data-model tension in description of K⁻p interaction:
 - $K^-p \leftrightarrow \bar{K}^0$ n currently implemented in state-of-the-art Kyoto χ EFT is too weak

- More studies in reach with large statistics in LHC Run 3 & 4
 - Unique way to access coupled channels dynamics in the meson-baryon sector: open a new era in the charm sector!



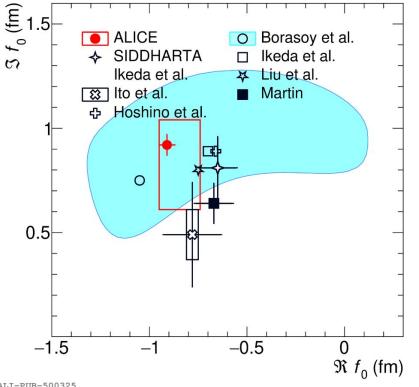
30/06/2022

K⁻p in large systems


- K⁺p used to extract source size
 - Gaussian source
 - Lednický-Lyuboshitz (LL) fit to extract r_{eff}

ALICE Collaboration PLB 822 (2021) 136708

K⁻p in large systems



- K⁺p used to extract source size
 - Gaussian source
 - Lednický-Lyuboshitz (LL) fit to extract r_{eff}
- Large system: no coupled channels (as in Kyoto model)
- Use Lednický-Lyuboshitz (LL) fit to extract $\Re f_0$ and $\Im f_0$

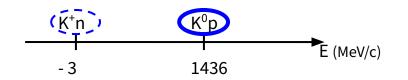
ALICE Collaboration PLB 822 (2021) 136708

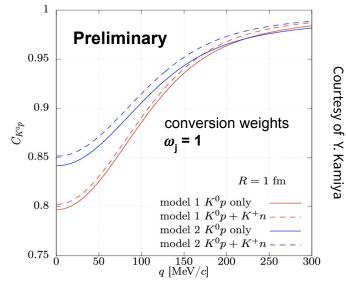
K⁻p in large systems

- K⁺p used to extract source size
 - Gaussian source Ο
 - Lednický-Lyuboshitz (LL) fit to Ο extract r_{eff}
- Large system: no coupled channels (as in Kyoto model)
- Use Lednický-Lyuboshitz (LL) fit to extract $\Re f_0$ and $\Im f_0$
- $\Re f_0$ and $\Im f_0$ in agreement with available data and calculations
 - Alternative to exotic atoms \cap and scattering experiments!

ALI-PUB-500325

ALICE Collaboration PLB 822 (2021) 136708


30/06/2022

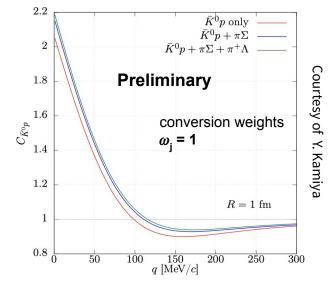

Accessing KN and $\overline{K}N$ interaction with K°

- K⁰_s –p system is a combination of strong eigenstates

$$|K_s^0 p\rangle = \frac{1}{\sqrt{2}} \left[\overline{|K^0 p\rangle} - \overline{|\bar{K}^0 p\rangle} \right] \implies C_{K_s^0 p} = \frac{1}{2} \left[C_{K^0 p} + C_{\bar{K}^0 p} \right]$$

- Weak strong repulsion
- 1 CC below threshold: K^+n
 - predicted to be a weak coupling
- Calculations from **A**oki-**J**ido χ EFT model for KN[1]

[1] K. Aoki and D. Jido, PTEP 2019, 013D01 (2019), 1806.00925.

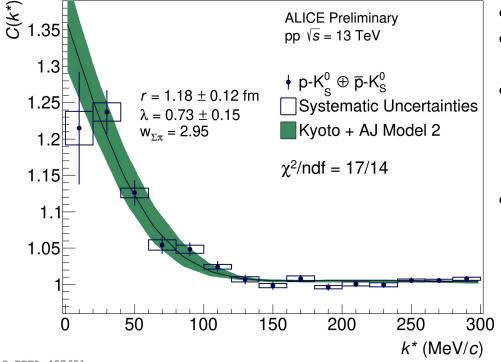

30/06/2022

Accessing KN and $\overline{K}N$ interaction with K°

• K^o_s –p system is a combination of strong eigenstates

$$|K_s^0 p\rangle = \frac{1}{\sqrt{2}} \left[\overline{|K^0 p\rangle} - \overline{|\bar{K}^0 p\rangle} \right] \implies C_{K_s^0 p} = \frac{1}{2} \left[C_{K^0 p} + C_{\bar{K}^0 p} \right]$$

- Moderate attraction
- 3 CC below threshold: $\pi^0 \Sigma^+$, $\pi^+ \Sigma^0$, $\pi^+ \Lambda$
 - large $\pi\Sigma$ coupling (as in K⁻-p)
- Calculations from Kyoto χEFT model for K⁻p [1,2]

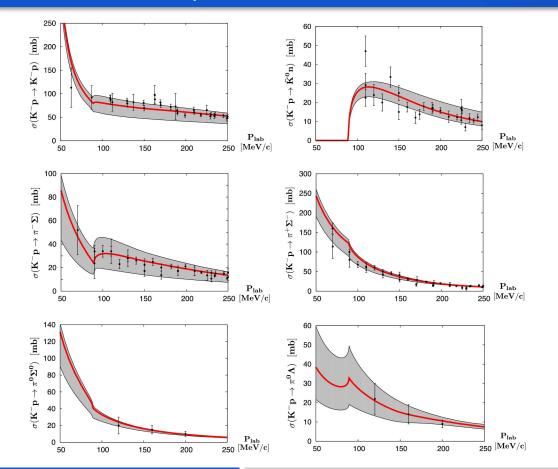


[1] K. Miyahara, et al., PRC98, 025201 (2018), arXiv: 1804.08269 [2] Y.Kamiya, et al., PRL124 (2020) 132501

30/06/2022

K^o_s-p interaction

- Gaussian source function with r=1.18±0.12 fm [1]
- $K^{o}p(\bar{p})$ and $\bar{K}^{o}(\bar{p}) \psi$ with CC provided by Kyoto χ EFT
- Conversions weights $\omega = 1$ for K°p, K+n, and $\pi^+\Lambda$; $\omega_{\Sigma\pi} = 2.95$ [2]
- Model describes data within 2σ between 0 and 300 MeV/c
 - State-of-the-art theory well describes the experimental data
 - Small caveat: source not (yet) studied in details


[1] ALICE Collaboration, PRL 124, 092301 (2020) [2] Y.Kamiya, et al., PRL 124 132501 (2020)

30/06/2022

ALI-PREL-487651

Best fit of K⁻p observables: cross section data

Y. Ikeda et al., PLB Volume 706, (2011),63-67

30/06/2022

$\overline{K}N$ scattering lengths

• Deser-type relation connects shift ε_{1s} and width Γ_{1s} to the real and imaginary part of α_{K^-p} and α_{K^-d} :

$$\varepsilon + \frac{i\Gamma}{2} = 2\alpha^{3}\mu^{2}a_{K^{-}p} = 412\frac{eV}{fm}a_{K^{-}p}$$
 done by SIDDHARTA
$$\varepsilon + \frac{i\Gamma}{2} = 2\alpha^{3}\mu^{2}a_{K^{-}d} = 601\frac{eV}{fm}a_{K^{-}d}$$
 aim of SIDDHARTA-2

• one can obtain the isospin dependent antikaon-nucleon scattering lengths

$$a_{K^{-}p} = \frac{a_0(I=0) + a_1(I=1)}{2}$$
$$a_{K^{-}d} = \frac{1}{2} \frac{m_N + m_K}{m_N + \frac{m_K}{2}} (3a_1 + a_0) + C$$

Fundamental inputs of low-energy QCD effective field theories

30/06/2022

Resonances used for $\pi\Sigma(\Lambda)$ source (π)

- ALICE
- For modeling the source every resonance with a cτ > 8 fm is taken out and the yields properly renormalized. These resonance are used to determine the decay-kinematics with EPOS.

Primordial fraction	Resonance fractions			
	<i>с</i> т < 1 fm	1 <i>< c1</i> < 2 fm	2 < c 7 < 5 fm	<i>ct</i> > 5 fm
28 %	15 %	35 %	10 %	12 %

$$< m(\pi) > = 1124 \text{ MeV}/c^2$$

$$< c\tau(\pi) > = 1.5 \text{ fm}$$

Resonance	ρο	ρ⁺	ω	K(892)**	
Yield (in %)	9.01	8.71	7.67	2.29	

Only resonances which contribute more then 2% to total yield are shown

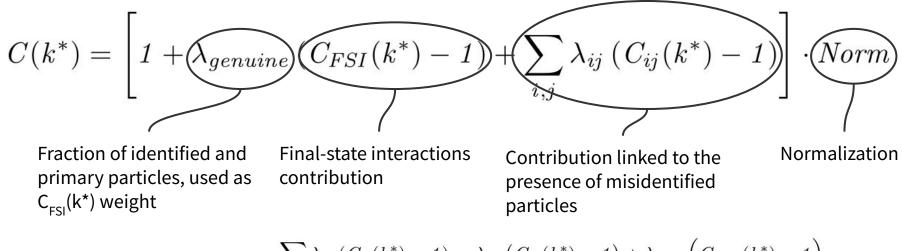
Resonances used for $\pi\Sigma(\Lambda)$ source ($\Sigma\Lambda$)

 For modeling the source every resonance with a cτ > 8 fm is taken out and the yields properly renormalized. These resonance are used to determine the decay-kinematics with EPOS.

Primordial fraction	Resonance fractions			
	<i>c1</i> < 1 fm	1 <i>< c7</i> < 2 fm	2 < c 7 < 5 fm	<i>ct</i> > 5 fm
26 %	0 %	5 %	5 %	64 %

$$< m(\Sigma) > = 1463 \text{ MeV/c}^2$$

 $< c\tau(\Sigma) > = 4.7 \text{ fm}$


Resonance	Σο	Σ*0	Σ**	Σ*-
Yield (in %)	27	12	12	12

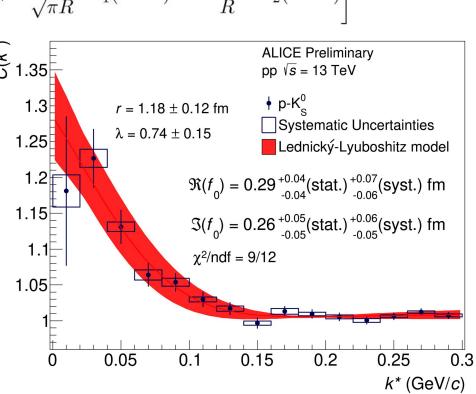
Only resonances which contribute more then 2% to total yield are shown

Contributions to the experimental correlation function

• Fit of the $C(k^*) = C_{data}(k^*)/C_{baseline}(k^*)$ to obtain the parameters of the strong interaction between K_{s}^{0} and $p(\bar{p})$ is performed with the function:

$$\sum_{i,j} \lambda_{ij} \left(C_{ij}(k^*) - 1 \right) = \lambda_{\tilde{K}} \left(C_{\tilde{K}}(k^*) - 1 \right) + \lambda_{\tilde{p}(\tilde{p})} \left(C_{\tilde{p}(\tilde{p})}(k^*) - 1 \right)$$

K°_s-p correlation function fit with Lednický-Lyuboshitz



$$C_{FSI}(k^*) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)}{R} \right|^2 \left(1 - \frac{d_0}{2\sqrt{\pi R}} \right) + \frac{2\Re f(k^*)}{\sqrt{\pi R}} F_1(2k^*R) - \frac{\Im f(k^*)}{R} F_2(2k^*R) - \frac{\Im f(k^*R)}{R} F_2(2k^*R) - \frac{\Im f(k^*R)}{$$

Scattering amplitude:

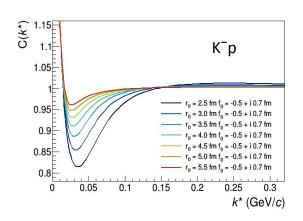
$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

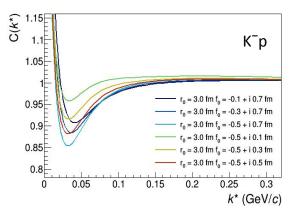
- f_0 scattering length, d_0 effective range of interaction
 - \circ $\Re f_0, \Im f_0$ estimated parameters
- $\Re f_0 > 0$: attractive interaction
- ℑf₀ ≠0 : presence of annihilation processes

ALI-PREL-487626

30/06/2022

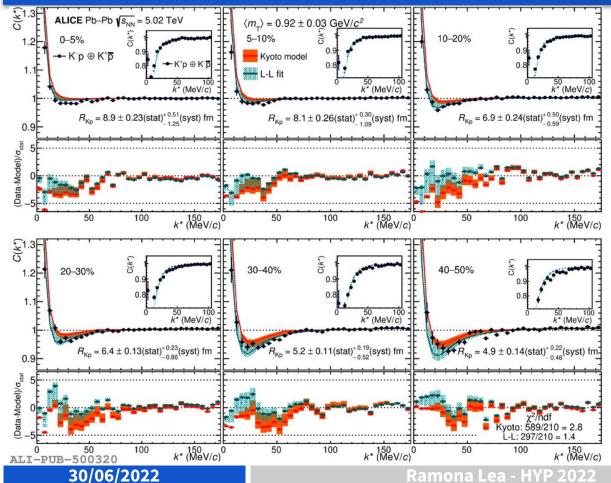
Kaon-proton interaction - Large systems


Lednický-Lyuboshitz model

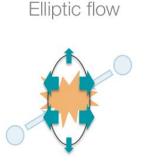

$$C(\mathbf{k}^*) = \frac{\int S(\mathbf{r}^*, \mathbf{k}^*) |\psi(\mathbf{r}^*, \mathbf{k}^*)|^2}{\int S(\mathbf{r}^*, \mathbf{k}^*)} \mathrm{d}^4 r^*$$

$$|\psi(r^*,k^*)| = \sqrt{A_C(\eta)} \left[\exp(-ik^*r^*)F(-i\eta,1,i\xi) + f_c(k^*)\frac{G}{r^*} \right]$$

$$f_{c}(k^{*}) = \left(\frac{1}{f_{0}} + \frac{d_{0} \cdot k^{*2}}{2} - \frac{-2h(k^{*}a_{c})}{s_{c}} - ik^{*}A_{c}(k^{*})\right)^{-1}$$


- Numerically solvable (strong+Coulomb)
- **3 parameters:** $\Re f_0$, $\Im f_0$ and source r define the correlation function.
- d₀ = 0 (zero effective range approx.)

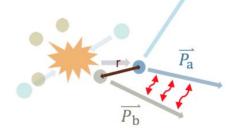
Kaon-proton in Pb-Pb



- No K⁰n structure
- Simultaneous description (and fit) of the correlation functions for 6 centralities (0-50%) with two parameters and 6 radii
- Radii constrained from K⁺p

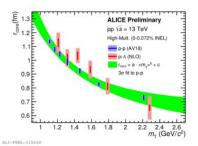
Small Sources: Collective Effects and Strong Resonances

Anisotropic pressure gradients within the source



Radial flow

- Expanding source with constant velocity
- Different effect on different
 masses


Strong decays of broad resonances

U. A. Wiedemann, U. W. Heinz, Phys.Rept. 319, 145-230 (1999)

- Resonances with $c\tau \sim r_0 \sim 1$ fm (Δ^* , N^{*}, Σ^*) introduce an exponential tail to the source
- Different for each particle species

Core Radius

Strong decays of specific resonances

30/06/2022