



# Strong Interaction Studies in $\Lambda$ - hadron systems up to S = -3 with ALICE

Georgios Mantzaridis on behalf of the ALICE Collaboration Technical University of Munich 29.06.2022



14<sup>th</sup> International Conference on Hypernuclear and Strange Particle Physics

June 27–July 1, 2022 Prague, Czech Republic

### The strong interaction with $\Lambda$ -hadrons





### The strong interaction with $\Lambda$ -hadrons





Georgios Mantzaridis | TUM, Chair E62

### The strong interaction with $\Lambda$ -hadrons





#### A Bridge to overcome this misalignment

### Method: Femtoscopy

Figures: Nature 588, 232 (2020)



#### Central part: The correlation function in terms of the relative momentum k\*







#### Search for H-dibaryon: bound state of *uussdd* ( $\Lambda\Lambda$ )

- > No evidence of a H decay in elementary  $e^+e^-$  collisions
- > Nagara event: Double  $\Lambda\Lambda$  hypernuclei  ${}^{6}_{\Lambda\Lambda}$ He
  - Hints to a weak attractive interaction
  - Limit on binding energy:  $B_{\Lambda\Lambda}$  = 6.91 ± 0.16 MeV



- ➤ Combined measurement of pp (@ 7,13 TeV) and
  - p-Pb (@ 5.02 TeV) collisions:
- Incompatible predictions:
  - Ehime: strongly attractive interaction
  - NF44: shallow bound state
- Compatible predictions:
  - ESC08 and HKMYY: shallow attractive interaction
  - ND46: bound state

ALTCF



 $\succ$  Combined measurement of pp (@ 7,13 TeV) and

p-Pb (@ 5.02 TeV) collisions:

- Incompatible predictions:
  - Ehime: strongly attractive interaction
  - NF44: shallow bound state
- Compatible predictions:
  - ESC08 and HKMYY: shallow attractive interaction

ND46: bound state

#### Effective-range expansion: d<sub>0</sub> and f<sub>0</sub>:

- >  $f_0 > 0$ : attractive interaction
- >  $f_0 < 0$ : repulsive interaction
- >  $f_0 < 0$  and  $d_0 > |f_0|/2$ : bound state





- Scan the (f<sub>0</sub><sup>-1</sup>,d<sub>0</sub>) parameter space with the Lednický Lyuboshits model in terms of nσ deviations
- > Compatible with:
  - Shallow attractive interaction
  - Bound state





- Scan the (f<sub>0</sub><sup>-1</sup>,d<sub>0</sub>) parameter space with the Lednický Lyuboshits model in terms of nσ deviations
- > Compatible with:
  - Shallow attractive interaction
  - Bound state
- New upper limit on the binding energy of the H-dibaryon via a transformation from

$$(f_0^{-1}, d_0)$$
 to  $(B_{\Lambda\Lambda}, d_0)$  using

$$B_{\Lambda\Lambda} = \frac{1}{m_{\Lambda}d_0^2} \left( 1 - \sqrt{1 + 2d_0 f_0^{-1}} \right)^2$$



Click here to insert text



### |S| = 3: p- $\Omega^{-}$ interaction with femtoscopy



- Indication of missing attractive interaction when considering only Coulomb
- Better agreement of data without inelastic contributions
- Higher accuracy in the data than in the theoretical calculation
- Prediction of a bound state with binding energy 2.5 MeV
  - $\Rightarrow$  not reproduced by the data



ALICE Coll. Nature 588, 232 (2020)



Baseline (no interaction):



arXiv:2204.10258, submitted to PLB

First experimental observation of the  $\Lambda$ - $\Xi$ <sup>-</sup> interaction

Baseline (dotted line):

- > Constrained at large k<sup>\*</sup> ∈ [200,800] MeV/c
- Compatibility with the data @ k\* < 200 MeV/c:</li>
   0.78 nσ
- $\Rightarrow$  No significant deviation of the data from the baseline
- $\Rightarrow$  Indication of shallow  $\Lambda$ - $\Xi$ <sup>-</sup> interaction
- ⇒ New publication: <u>arXiv:2204.10258</u>



Comparison with Lattice QCD<sup>(\*)</sup>



<sup>&</sup>gt; Unknown contribution from coupled channels in Lattice QCD calculations (see  $p-\Omega^-$  interaction)

- Coupling  $\Lambda \Xi \Sigma \Xi$  sizable in HAL QCD calculation
- "No coupling" preferred: 0.64 nσ vs. 1.43 nσ but no sensitivity yet
- $\succ$  No NΩ cusp visible ⇒ hint to negligible coupling

arXiv:2204.10258, submitted to PLB







#### Comparison with xEFT NLO<sup>(\*)</sup>



arXiv:2204.10258, submitted to PLB

| potential<br>(cut-off) | singlet        |                | triplet        |                |             |
|------------------------|----------------|----------------|----------------|----------------|-------------|
|                        | f <sub>o</sub> | d <sub>o</sub> | f <sub>o</sub> | d <sub>o</sub> | nσ          |
| NLO16 (500)            | 0.99           | 5.77           | -0.026         | 142.9          | 0.56 - 0.93 |
| NLO16 (650)            | 0.91           | 4.63           | 0.12           | 32.02          | 0.91 – 1.61 |
| NLO19 (500)            | 0.99           | 5.77           | 1.66           | 1.49           | 5.47 – 7.26 |
| NLO19 (650)            | 0.91           | 4.63           | 0.42           | 6.33           | 1.30 – 2.10 |

\* J. Haidenbauer, U.-G. Meißner, arXiv:2201.08238v1 [nucl-th] (2022)

- Data favour with shallow interaction
- Best compatibility with lowest scattering lengths
- > Constraints on SU(3) symmetry breaking parameters

### Summary and Outlook

#### **Λ-Λ** interaction:

- Compatible with LQCD
- > Bound state not excluded  $\Rightarrow$  new limit

#### $p-\Omega^{-}$ interaction:

- Most precise measurement of the interaction
- Bound state not observed

#### $\Lambda$ - $\Xi$ <sup>-</sup> interaction:

- > First observation of a shallow  $\Lambda$ - $\Xi$  interaction and comparison to LQCD
- New paper public on arXiv
- ➢ Greater improvements expected in upcoming Run 3 and 4 of the LHC



# Backup



## High multiplicity pp collisions





- pp collisions at ALICE are a perfect factory to produce a large amount of multi-strange hyperons
- enhanced strangeness containing particle yield detected in pp collisions at 13 TeV:

```
ALICE Coll. Nature Phys. 13 (2017) 535-539
```

- Excellent particle reconstruction and identification capabilities of the ALICE detector
  - In particular: Detection of Hyperons via their weak decay
  - high purities and resolutions archived

### Hyperons at ALICE in pp Collisions





#### Source Function ALICE Coll., Physics Letters B, 811 (2920) 135849

#### Consists of two parts:

 $\pi$ 

- > Common  $m_T$  scaling of the core radius  $r^*_{Core}$
- Extension to an effective source size r<sup>\*</sup><sub>eff</sub> by strongly decaying resonances (specific for each baryon pair)







# Source Function: Common source



ALICE Coll., Physics Letters B, 811 (2920) 135849



#### The Lednický-Lyuboshits model



Analytical approach to model CF for strong final state interactions with the scattering amplitude  $f_0$ 

$$C(k^{*})_{\text{Lednicky}} = 1 + \sum_{S} \rho_{S} \left[ \frac{1}{2} \left| \frac{f(k^{*})^{S}}{r_{0}} \right|^{2} \left( 1 - \frac{d_{0}^{S}}{2\sqrt{\pi}r_{0}} \right) + \frac{2\Re f(k^{*})^{S}}{\sqrt{\pi}r_{0}} F_{1}\left( 2k^{*}r_{0} \right) - \frac{\Im f(k^{*})^{S}}{r_{0}} F_{2}\left( 2k^{*}r_{0} \right) \right]$$

d<sub>0</sub>: effective range f<sub>0</sub>: scattering length

$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

#### The Lednický-Lyuboshits model



Analytical approach to model CF for strong final state interactions with the scattering amplitude  $f_0$ 

$$C(k^{*})_{\text{Lednicky}} = 1 + \sum_{S} \rho_{S} \left[ \frac{1}{2} \left| \frac{f(k^{*})^{S}}{r_{0}} \right|^{2} \left( 1 - \frac{d_{0}^{S}}{2\sqrt{\pi}r_{0}} \right) + \frac{2\Re f(k^{*})^{S}}{\sqrt{\pi}r_{0}} F_{1}(2k^{*}r_{0}) - \frac{\Im f(k^{*})^{S}}{r_{0}} F_{2}(2k^{*}r_{0}) \right]$$
  
$$d_{o}: \text{ effective range}$$

 $d_0$ : effective range  $f_0$ : scattering length

$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

# $\Lambda$ - $\Lambda$ Correlation function in different systems

ALICE Coll., Physics Letters B, 811 (2920) 135849





# ALICE

# $\Lambda$ - $\Lambda$ Limits for the binding energy from femtoscopy

ALICE Coll., Physics Letters B, 811 (2920) 135849



# Femtoscopy in small colliding systems

V. M. S., L. Fabbietti and O. Vazquez-Doce nucl-ex 2012.09806

- small collision systems necessary to study the short ranged strong interaction
- $\succ$  short interparticle distances  $\rightarrow$  mimic large densities



ALICE

### $p-\Omega^-$ : Detailed look at the interaction





ALICE

Baseline (no interaction):



Λ-Ξ<sup>-</sup> pairs:

 $1.3 \cdot 10^{6}$  (6.1 · 10<sup>3</sup> for k\* < 200 MeV/*c*)

#### **Baseline (dotted line):**

- constrained at large k<sup>\*</sup> ∈ [200,800] MeV/*c*
- Compatibility with the data @ k\* < 200 MeV/*c*:

#### 0.78 nσ

 $\Rightarrow$  No significant deviation of the data from the baseline

 $\Rightarrow$  indication of shallow  $\Lambda \Xi$  interaction

ALICE Coll. arXiv:2204.10258, submitted to PLB

# |S| = 3: $\Lambda$ - $\Xi$ <sup>-</sup> interaction – with femtoscopy



#### Comparison with Lattice QCD:



| Compatibility with<br>potential $\Lambda \equiv -\Sigma \equiv$ effective<br>$\Lambda \equiv -\Lambda \equiv$ only | <b>theory</b><br><u>nσ band</u><br>1.43 – 2.34<br>0.64 – 1.04 |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>Conclusions</b><br>- Noticeable $\Lambda \Xi - \Sigma$                                                          | E coupling in HAL QCD potential                               |

- no experimental sensitivity on the coupling



Comparison with  $\chi EFT$ : LO



ALICE Coll. arXiv:2204.10258, submitted to PLB

#### Scattering parameters and compatibility

| potential<br>(cut-off) | singlet        |                | triplet        |                |             |
|------------------------|----------------|----------------|----------------|----------------|-------------|
|                        | f <sub>o</sub> | d <sub>0</sub> | f <sub>o</sub> | d <sub>0</sub> | Nσ          |
| LO (500)               | 33.5           | 1.00           | -0.33          | -0.36          | 3.06 - 5.12 |
| LO (700)               | -9.07          | 0.87           | -0.31          | -0.27          | 0.78 – 1.60 |

#### **Conclusions:**

- strong attraction in the singlet channel
- mild repulsion in the triplet channel
- for LO (700): bound state with 0.43 MeV
- $\Rightarrow$  strong attraction of LO (500) excluded
- $\Rightarrow$  better compatibility with smaller scattering length

# |S| = 3: $\Lambda$ - $\Xi$ <sup>-</sup> interaction – with femtoscopy



Comparison with xEFT: NLO(\*)



ALICE Coll. arXiv:2204.10258, submitted to PLB

Georgios Mantzaridis | TUM, Chair E62

#### Scattering parameters and compatibility

| potential<br>(cut-off) | singlet        |                | triplet        |                |             |
|------------------------|----------------|----------------|----------------|----------------|-------------|
|                        | f <sub>o</sub> | d <sub>0</sub> | f <sub>o</sub> | d <sub>0</sub> | nσ          |
| LO (500)               | 33.5           | 1.00           | -0.33          | -0.36          | 3.06 – 5.12 |
| LO (700)               | -9.07          | 0.87           | -0.31          | -0.27          | 0.78 – 1.60 |
| NLO16 (500)            | 0.99           | 5.77           | -0.026         | 142.9          | 0.56 - 0.93 |
| NLO16 (650)            | 0.91           | 4.63           | 0.12           | 32.02          | 0.91 – 1.61 |
| NLO19 (500)            | 0.99           | 5.77           | 1.66           | 1.49           | 5.47 – 7.26 |
| NLO19 (650)            | 0.91           | 4.63           | 0.42           | 6.33           | 1.30 – 2.10 |

#### **Conclusions:**

- no bound state in NLO potentials
- best compatibility with lowest scattering lengths
- $\Rightarrow$  important constraints for free SU(3) breaking

parameters in the potentials by ALICE \* J. Haidenbauer, U.-G. Meißner, arXiv:2201.08238v1 [nucl-th] (2022)

### Data analysis $\Lambda$ - $\Xi$ <sup>-</sup>





#### Data analysis $\Lambda$ - $\Xi$ <sup>-</sup>





#### **Λ-Ξ<sup>-</sup> pairs:** 1.3 · 10<sup>6</sup> (6.1 · 10<sup>3</sup> for k\* < 200 MeV/*c*)

#### Georgios Mantzaridis | TUM, Chair E62

### Modelling the correlation function



$$C_{\exp}(k^*) = C_{\text{non-femto}}(k^*) \cdot C_{\text{femto}}(k^*)$$

 $C_{\text{non-femto}}(k^*)$  Baseline from non-femto effects such as energy conservation  $C_{\text{femto}}(k^*)$  Final state interactions, depending on the analysed baryon pairs

$$C_{\text{femto}} (k^*) = \lambda_{\text{gen}} \cdot C_{\text{gen}} (k^*) + \lambda_{\text{bkg}} \cdot C_{\text{bkg}} (k^*) + \lambda_{\text{feed}} \cdot C_{\text{feed}} (k^*)$$

Example for feeddown correlation:

### Experimental $\Lambda$ - $\Xi$ <sup>-</sup> correlation function



| Femto C(k*)                                                                                                                                                                  | ) <u>:</u>            |                       | C <sub>non-femto</sub> (k*): | Source Function:                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------------|---------------------------------------|--|--|
| $C_{ m gen}(k^*)$                                                                                                                                                            | 33%:                  | Lednický model        | a) A(1+ p k*²)               | <m<sub>T&gt; = 2.0 GeV/c</m<sub>      |  |  |
| $C_{ m bgk}(k^*)$                                                                                                                                                            | 11%:                  | 2nd degree polynomial | b) A(1+ p k* <sup>3</sup> )  | $r_{core} = 0.89 \pm 0.05 \text{ fm}$ |  |  |
| $C_{ m feed}(k^*)$                                                                                                                                                           | <i>z</i> *) 56%: Flat |                       |                              | r <sub>eff</sub> = 1.03 ± 0.05 fm     |  |  |
|                                                                                                                                                                              |                       |                       |                              |                                       |  |  |
| Υ                                                                                                                                                                            |                       |                       |                              |                                       |  |  |
| Correct the genuine theoretical calculated C(k*) for the additional contributions:                                                                                           |                       |                       |                              |                                       |  |  |
| $C_{\text{femto}}(k^*) = \lambda_{\text{gen}} \cdot C_{\text{gen}}(k^*) + \lambda_{\text{bkg}} \cdot C_{\text{bkg}}(k^*) + \lambda_{\text{feed}} \cdot C_{\text{feed}}(k^*)$ |                       |                       |                              |                                       |  |  |
| $C_{\exp}(k^*) = C_{\text{non-femto}}(k^*) \cdot C_{\text{femto}}(k^*)$                                                                                                      |                       |                       |                              |                                       |  |  |

Georgios Mantzaridis | TUM, Chair E62

### Genuine $\Lambda \Xi^-$ interaction





➤ dotted lines correspond to the larger cut-off version in xEFT potentials



ALICE Coll. arXiv:2204.10258, submitted to PLB