HYP2022

Information on double hypernuclei with nuclear emulsion detector

Kazuma NAKAZAWA

Phys. Dept., Gifu Univ., JAPAN 27th June, 2022

On behalf of E07(J-PARC) collaborations

Outline

- * Experiments using nuclear emulsion for Double hypernuclei
- * Results of Double Hypernuclei from those experiments
 - double- Λ hypernuclei
 - Ξ hypernuclei
- Event analysis with X-ray microscopy
- * Overall scanning (Scanning whole volume of the emulsion)
- * Summary and perspective

1/15

Topics with Double Hypernuclei

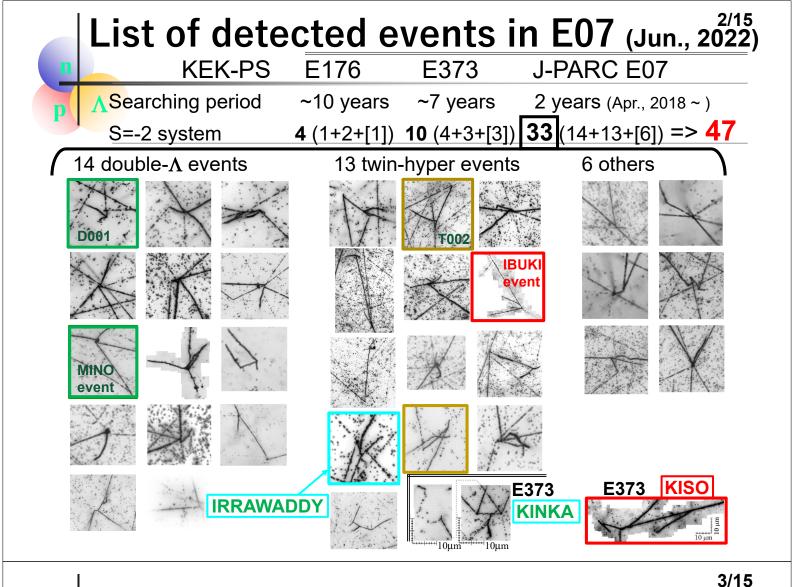
1) s-shell DBL. hypernuclei : ${}^{4}_{\Lambda\Lambda}$ H, ${}^{5}_{\Lambda\Lambda}$ He and ${}^{5}_{\Lambda\Lambda}$ H

 $\Lambda\Lambda$ - Ξ N-H coupling interaction affects mass, since s-shell nucleons are not fully occupied. Thus, it can be determined.

2) A = 6~17 $\Lambda\Lambda$ hypernuclei (spectroscopy)

Confirmation of $\Lambda\Lambda$ interaction strength and nuclear structure effects such as shrinkage due to Λ , independent information of NAGARA event, $_{\Lambda\Lambda}^{6}$ He.

3) Ξ -hypernuclei : Ξ^{-16} O, Ξ^{-14} N, Ξ^{-12} C


From multiple events of Ξ -hypernucleus, we can determine the (natural) width of Ξ -hypernucleus, which is related to $\Lambda\Lambda$ - Ξ N coupling interaction.

4) ΞN interaction with X-ray from Ξ -atoms

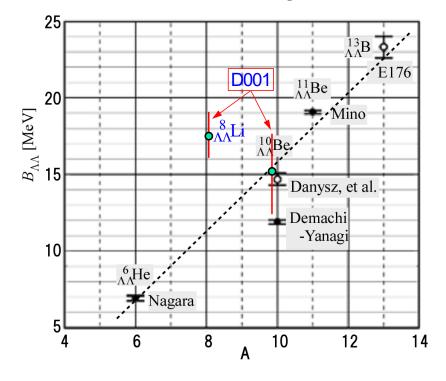
Expected yields for X-rays from Br and Ag are so small. To observe the shifts, it is necessary for detecting **peak shapes** with 10 times statistics.

5) Λ - Λ P-wave interaction (?)

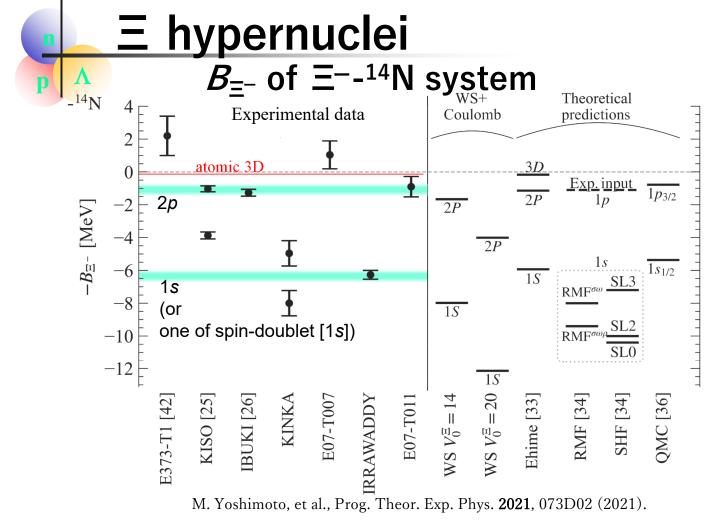
If $\Lambda\Lambda$ hypernuclei can be detected in excited states with **one** Λ -hyperon in p-orbit, it may present information on $\Lambda\Lambda$ p-wave interaction, where that will be recognized via the spectroscopy of $\Lambda\Lambda$ hypernuclei. The interaction might change max. mass of n-star.

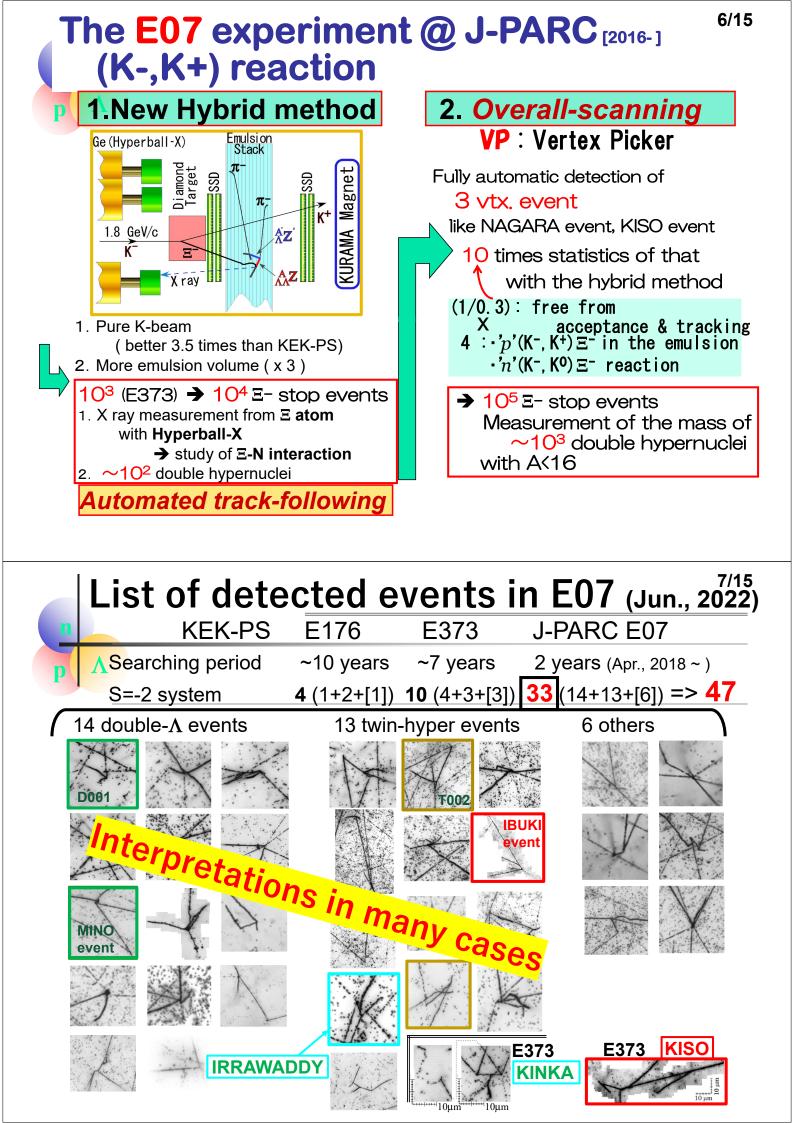
ist of detected events ever published

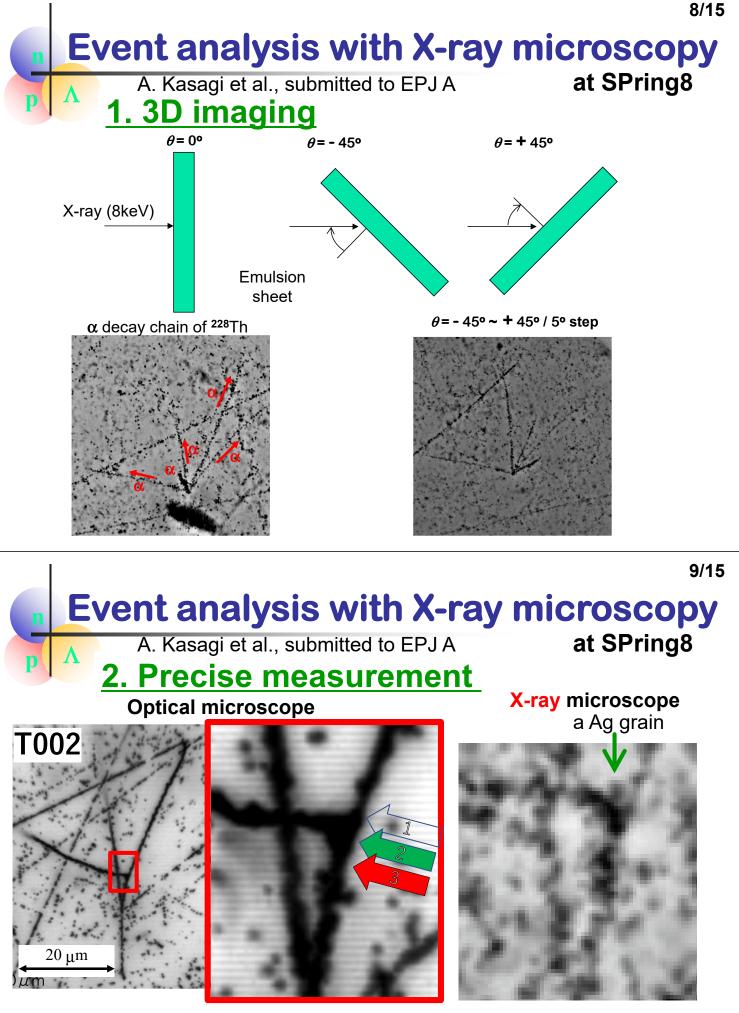
Table 13 Published data for $B_{\Lambda\Lambda}$ and $\Delta B_{\Lambda\Lambda}$. The atomic 3D absorption of Ξ^- was assumed for all cases. Those data from Danysz et al. and Hida are nominated by consistent interpretations with Nagara event. The difference of $B_{\Lambda\Lambda}$ ($\Delta B_{\Lambda\Lambda}$) values between pendent range and Danysz et al. will be excited state. The difference of $B_{\Lambda\Lambda}$ ($\Delta B_{\Lambda\Lambda}$) values between pendent range and Danysz et al. would be the excitation energy being 2.8 MeV of $^{10}_{\Lambda\Lambda}$ Be. In the Sec. 5 - 1 - 6, the error was separated into statistical and systematic ones for the Mino event.

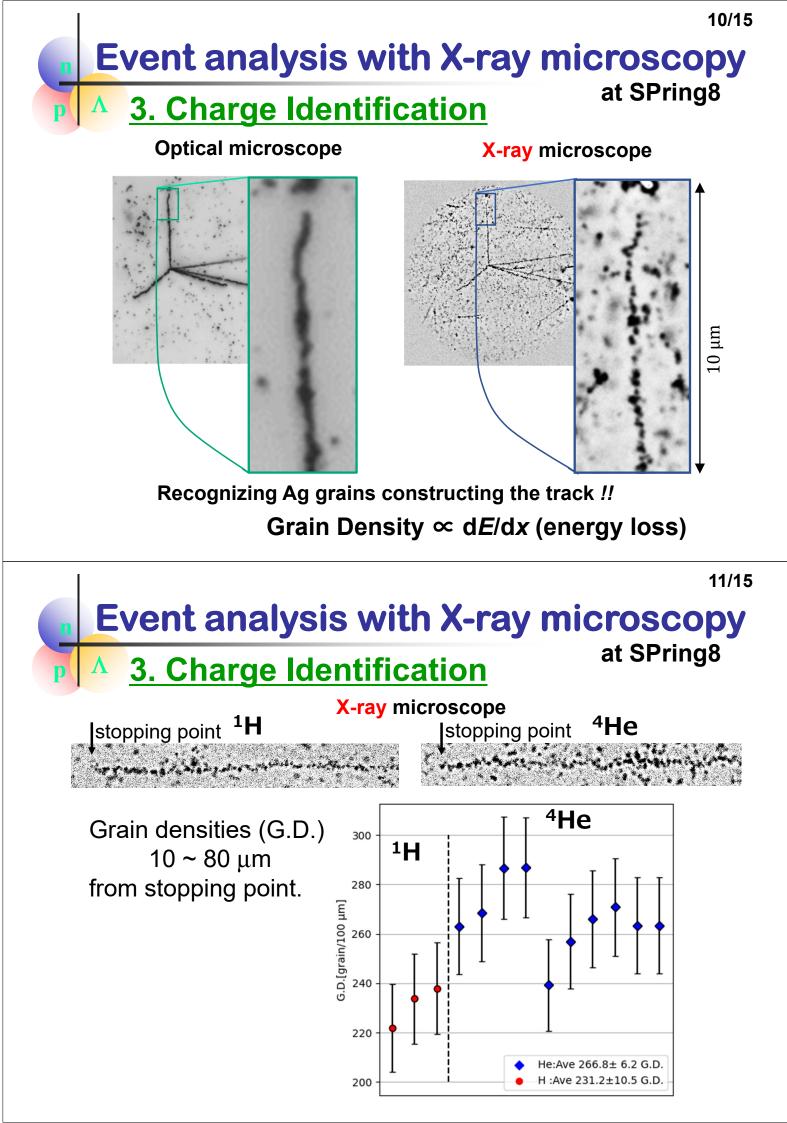

	-				
Ev. name	nuclide	Target	$B_{\Lambda\Lambda}$ (MeV)	$\Delta B_{\Lambda\Lambda}$ (MeV)	Comments
Nagara	$^{6}_{\Lambda\Lambda}$ He	^{12}C	6.91 ± 0.16	0.67 ± 0.17	Uniquely identified
Danysz	$^{10}_{\Lambda\Lambda}$ Be	¹² C	14.7 ± 0.4	1.3 ± 0.4	$^{10}_{\Lambda\Lambda}$ Be \rightarrow^9_{Λ} Be* (<i>Ex.</i> = 3.0 MeV)
E176	$^{13}_{\Lambda\Lambda}{ m B}$	^{14}N	23.3 ± 0.7	0.6 ± 0.8	$^{13}_{\Lambda\Lambda}$ B $\rightarrow^{13}_{\Lambda}$ C* (<i>Ex.</i> = 4.9 MeV)
Demachi- Yanagi	$^{10}_{\Lambda\Lambda}{ m Be}^*$	¹² C	11.90 ± 0.13	-1.52 ± 0.15	most probable (topology) $Ex. \sim 2.8 \text{ MeV for } {}^{10}_{\Lambda\Lambda}\text{Be}^*$
Mikage	$^{6}_{\Lambda\Lambda}$ He $^{11}_{\Lambda\Lambda}$ Be $^{11}_{\Lambda\Lambda}$ Be	^{12}C	$\begin{array}{c} 10.01 \pm 1.71 \\ 22.15 \pm 2.94 \\ 23.05 \pm 2.59 \end{array}$	3.95 ± 3.00	most probable (mesonic decay)
Hida	$^{11}_{\Lambda\Lambda}$ Be $^{12}_{\Lambda\Lambda}$ Be		$\begin{array}{c} 20.83 \pm 1.27 \\ 20.48 \pm 1.21 \end{array}$		Assumed 10.24 MeV for $B_{\Lambda}(^{11}_{\Lambda}\text{Be})$
Mino	$ \begin{array}{c} {}^{10}_{\Lambda\Lambda} \mathrm{Be} \\ {}^{11}_{\Lambda\Lambda} \mathrm{Be} \\ {}^{12}_{\Lambda\Lambda} \mathrm{Be} \end{array} \end{array} $	¹⁶ O	$\begin{array}{c} 15.05 \pm 0.11 \\ 19.07 \pm 0.11 \\ 13.68 \pm 0.11 \end{array}$	1.87 ± 0.37	most probable (χ^2 minimum)
D001	$^{8}_{\Lambda\Lambda}$ Li $^{10}_{\Lambda\Lambda}$ Be		$\begin{array}{c} 17.50 \pm 1.46 \\ 15.05 \pm 2.78 \end{array}$	$\begin{array}{c} 6.34 \pm 1.46 \\ 1.63 \pm 2.78 \end{array}$	likely by $B_{\Lambda\Lambda}$

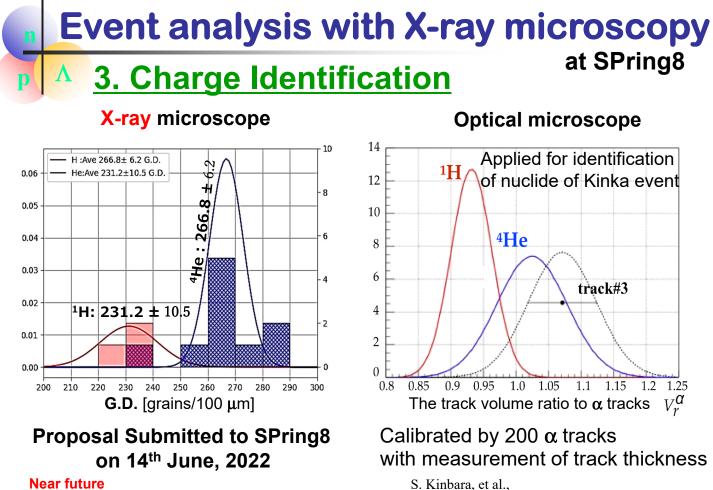
Double-A hypernuclei


Λ


р

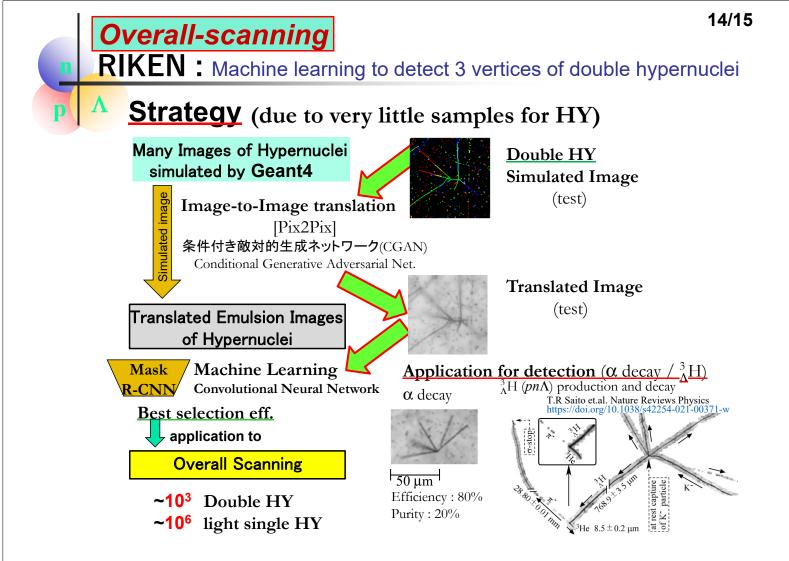

Mass number (A) dependence of $B_{\Lambda\Lambda}$


5/15



 $^{14}N + \Xi^{-} \rightarrow {}^{9}_{\Lambda}Be + {}^{5}_{\Lambda}He + n, B_{\Xi^{-}} = -4 \sim 1 \text{ MeV} @ vtx1~3$ \rightarrow With X-ray microscope, $B_{\Xi} = -1.5 \pm 1.0 \text{ MeV}$

Charge ID : ¹H, ⁴He => Li, Be, B


Overall-scanning

Prog. Theor. Exp. Phys. **2019**, 011H01 (2019).

13/15

Gifu U.: Speeding up for scanning of E07 emulsion)

ŀ	SPEC	E373	4MCamera	Piezo(x20)Old	Ultra-High Speed (x20)	
	Visual field size $(\mu m \times \mu m)$	140×120	270×270	560×280	560×560	
	Effective field size	110×90	240×240	530×250	530×530	
	Pixel size (µm)	0.28	0.11	0.275	0.275	
	Frame rate (Hz)	60	160	300	160	
	Depth of field (µm)	3	3	6	6	
	# of picture in half side	80	80	40	40	
	Dead time (s)	(0.2)	(0.2)	0.2	0.2	
	Scanning area(cm ² /day)	5.5	71	380	540	
\sim	For all E07 Emulsions (yr)	1500	110	21	16	
	Condition area : 1000 cm²/Em_she working : 250 days/year		∼ 4 years∕ 4 Mic. ↓ near future 10			

15/15

***** Summary and Prospect

- 1. Under the few results for DBL hypernuclei by previous experiments, we have challenged E07 experiment. Detection with Hybrid-emulsion method has been finished in this April, and then we got <u>33 samples of DBL HY</u>.
- 2. At present, B_{AA} for DBL-A HY may linearly depends on mass number (A). ΞN interaction is <u>attractive</u> and level scheme in $\frac{15}{\Xi}$ C hypernucleus could be seen without any theoretical aspects.
- To realize Overall Scanning for expected ~ 1×10³ DBL HY and ~ 1×10⁶ SGL HY, developments have been started for Speeding up for scanning, Machine learning
 - → 3.1 A dependence of $B_{\Lambda\Lambda}$ in DBL- Λ HY.
 - → 3.2 B_{Ξ} at the production of DBL- Λ HY.
 - \rightarrow 3.3 Level scheme in $\frac{15}{2}$ C hypernucleus.
 - → 3.4 Systems for $\Xi^{-12}C$ and $\Xi^{-16}O$.
 - → 3.5 Challenge for $\Xi^{-10}B(\frac{1}{2}Be: {}^{10}B \text{ doping emulsion [new exp.]}).$
- 4. Σ stop events, (K-, π^+), are expected in $\sim 1 \times 10^3$ for E07. \rightarrow precise measurement of B_{Σ} - on C, N and O.

Physics with Bi-products

5. $\rightarrow S = -3$ physics