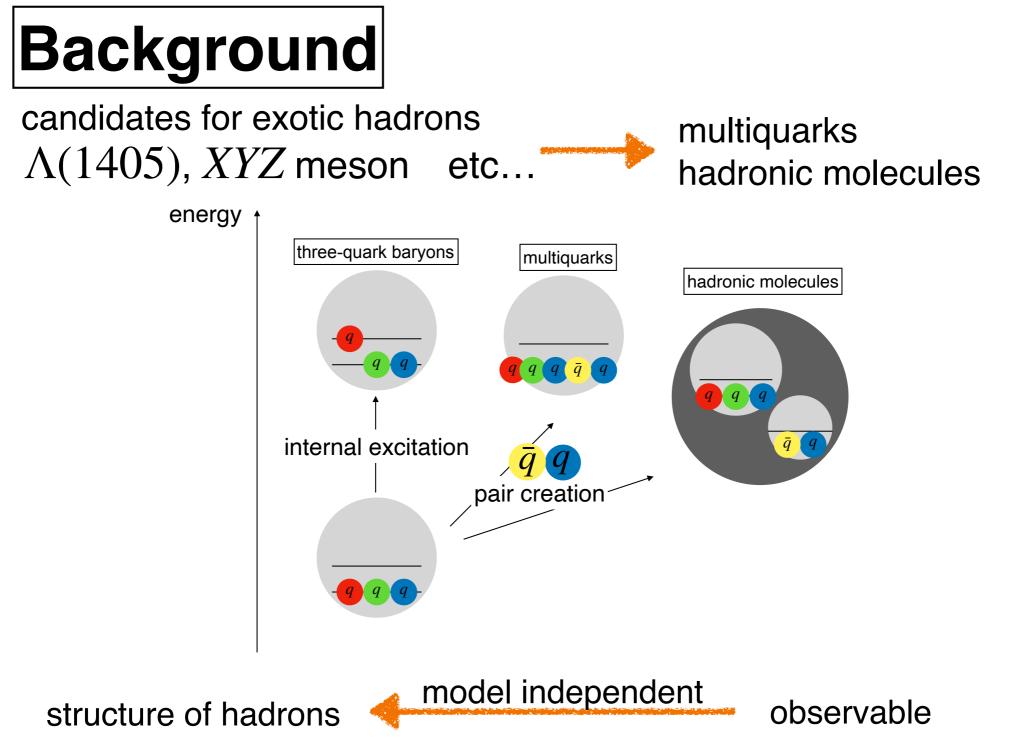
Structure of exotic hadrons by weak-binding relation with finite range correction

T. Kinugawa, T. Hyodo, arXiv:2205.08470[hep-ph] accepted in Phys. Rev. C

<u>Tomona Kinugawa</u>

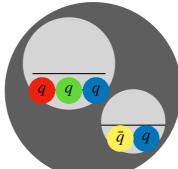
Tetsuo Hyodo

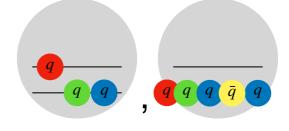
Department of Physics, Tokyo Metropolitan University June 30th HYP 2022



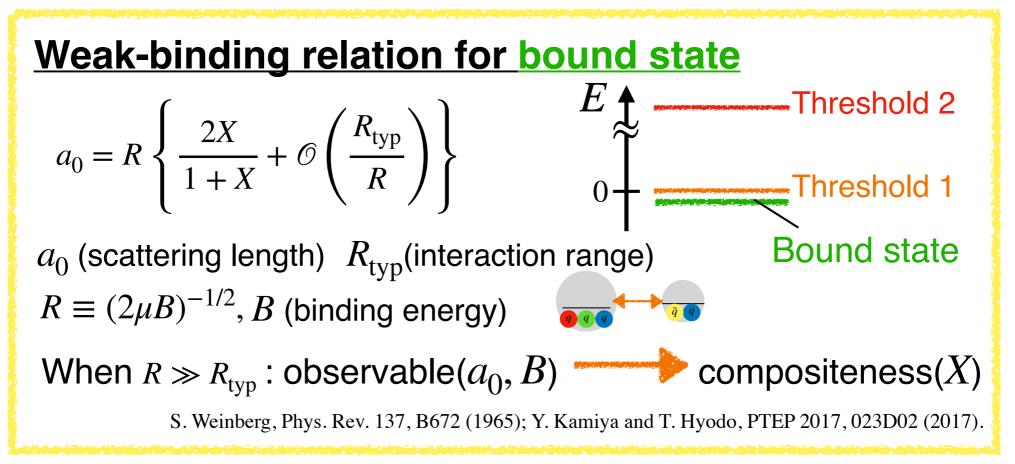
Previous work

Hadron wave function





 $|\Psi\rangle = \sqrt{X} |\text{hadronic molecule}\rangle + \sqrt{1 - X} |\text{others}\rangle$ Compositeness (weight of hadronic molecule)



Motivation Low-energy universality $\rightarrow R = a_0$ The range correction by introducing the effective range r_e

Range correction

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

Properties of the effective range model:

- -Single channel: |hadronic molecule > only $\Leftrightarrow X = 1$
- -Zero range limit: $R_{\text{typ}} \to 0$ $\Rightarrow a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\} \Leftrightarrow a_0 = R$

Renormalized scattering amplitude ($R_{typ} \rightarrow 0$):

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

$$a_0 = R \frac{2r_e/R}{1 - (r_e/R - 1)^2} = R \left[1 + \mathcal{O}\left(\left| \frac{r_e}{R} \right| \right) \right] \implies a_0 \neq R$$

range correction in the weak-binding relation form r_e

Improved weak-binding relation

$$a_{0} = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\} \text{ interaction range: } R_{\text{typ}} \longrightarrow R_{\text{int}}$$

Redefinition of R_{typ} : $R_{\text{typ}} = \max\left\{R_{\text{int}}, R_{\text{eff}}\right\},$

$$R_{\text{eff}} = \max\left\{ \left| r_e \right|, \frac{\left| P_s \right|}{R^2}, \cdots \right\}.$$

It reduces to previous weak-binding relation for $R_{typ} = R_{int}$.

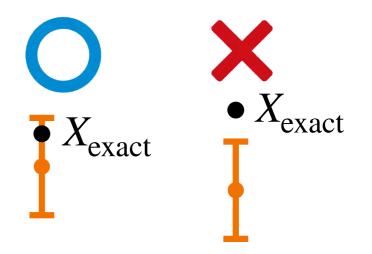
Numerical calculation

Effective range model ($R_{int} \neq 0$)

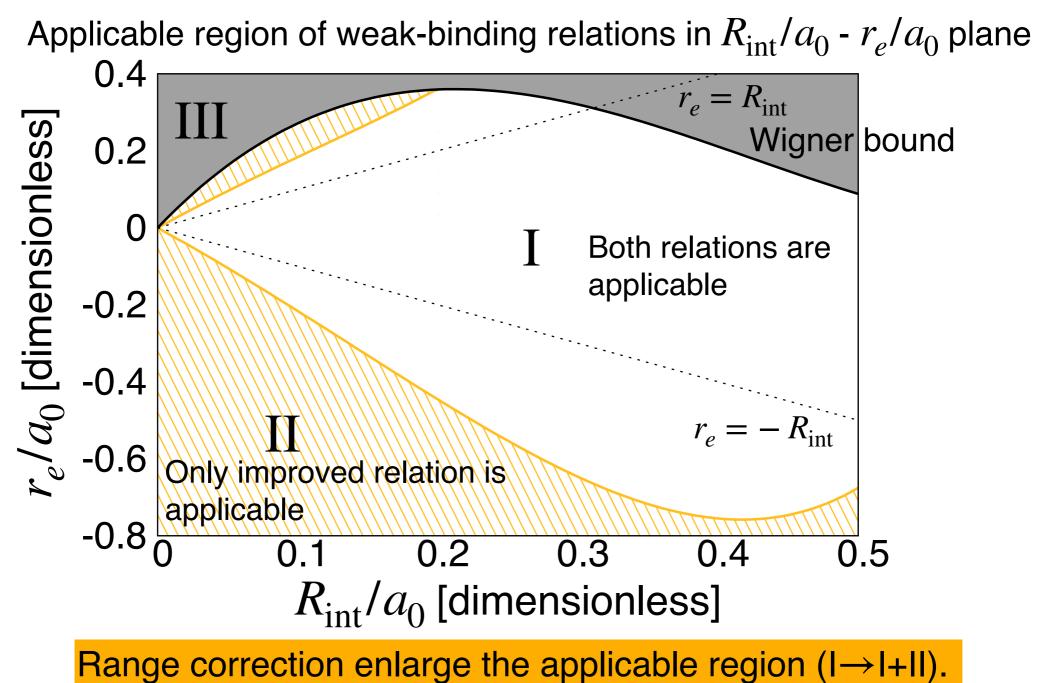
Weak-binding relation works when...

$$X_l < X_{exact} < X_u$$

Validity condition



Numerical calculation



Application

u: atomic mass unit, mK: millikelvin B.R.: Bohr Radius

 \rightarrow Range correction $R_{\rm typ} = R_{\rm eff}$

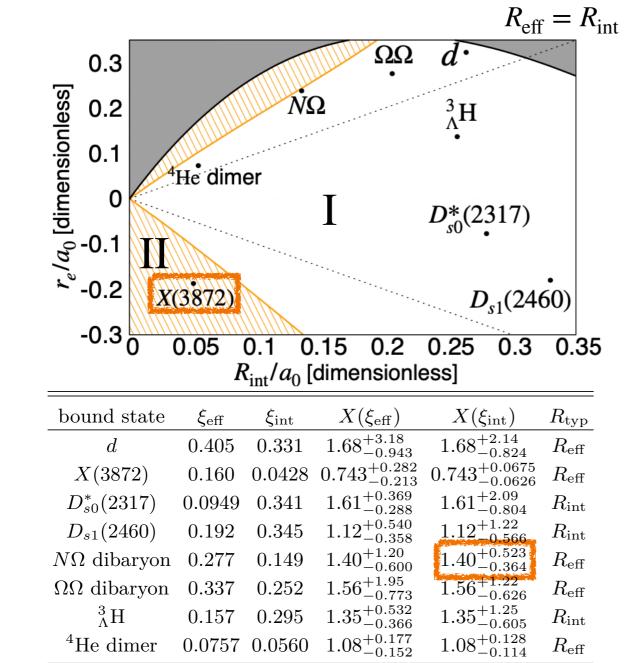
bound state	particle 1	particle 2	m_1	m_2	В	a_0	r_e	R	$R_{ m int}$
d	p	n	938.3 MeV	939.6 MeV	$2.22 { m MeV}$	5.42 fm	$1.75~\mathrm{fm}$	4.32 fm	1.43 fm
X(3872)	D^0	$ar{D}^{*0}$	$1865~{\rm MeV}$	$2010~{\rm MeV}$	$0.018 { m MeV}$	$28.5~\mathrm{fm}$	$-5.34 { m fm}$	33.4 fm	$1.43 \mathrm{fm}$
$D_{s0}^{*}(2317)$	D	K	$1867~{\rm MeV}$	$495.6~{\rm MeV}$	$44.8 \mathrm{MeV}$	$1.3~\mathrm{fm}$	$-0.1~\mathrm{fm}$	$1.05~\mathrm{fm}$	$0.359~\mathrm{fm}$
$D_{s1}(2460)$	D^*	K	$2009~{\rm MeV}$	$495.6~{\rm MeV}$	$45.1 { m MeV}$	$1.1~\mathrm{fm}$	$-0.2~\mathrm{fm}$	$1.03~{ m fm}$	$0.359~\mathrm{fm}$
$N\Omega$ dibaryon	N	Ω	$955 { m ~MeV}$	$1712~{\rm MeV}$	$1.54 { m MeV}$	$5.30~{ m fm}$	$1.26~\mathrm{fm}$	$4.54~{\rm fm}$	0.676 fm
$\Omega\Omega$ dibaryon	Ω	Ω	$1712~{\rm MeV}$	$1712~{\rm MeV}$	$1.6 \mathrm{MeV}$	$4.6~\mathrm{fm}$	$1.27 \mathrm{fm}$	$3.77~\mathrm{fm}$	0.949 fm
$^3_{\Lambda}{ m H}$	d	Λ	$1876~{\rm MeV}$	$1116~{\rm MeV}$	$0.13 { m MeV}$	$16.8~{ m fm}$	$2.3~\mathrm{fm}$	$14.6~\mathrm{fm}$	$4.32~\mathrm{fm}$
⁴ He dimer	$^{4}\mathrm{He}$	$^{4}\mathrm{He}$	4.003 u	4.003 u	1.30 mK	189 B.R.	13.8 B.R.	182.2 B.R.	10.2 B.R.

Low-energy universality holds $(a_0 > R_{int})$

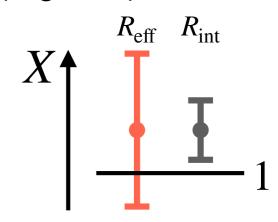
Bound states other than D_s and ${}^3_{\Lambda}$ H have larger $|r_e| > R_{int}$

Determination of R_{int}

- *d*, *X*(3872): Compton wavelength of π
- D_s : Compton wavelength of σ ($m_{\sigma} \sim 550$ MeV)
- $N\Omega$: lattice QCD [HAL QCD, Phys. Lett. B 792, 284 (2019)]
- $\Omega\Omega$: lattice QCD [S. Gongyo *et al.*, Phys. Rev. Lett. 120 212001 (2018)]
- ${}^{3}_{\Lambda}$ H: Radius of d ($d \Lambda$ interaction range)
- -⁴He dimer: van der Waals length [Z.-C. ¥an et al., Phys. Rev. A 54, 2824 (1996)]



X(3872) is contained in applicable region for improved weak-binding relation (region II)



Estimated X_l by previous relation $N\Omega$ dibaryon :

 $X_l = 1.40 - 0.364 > 1$

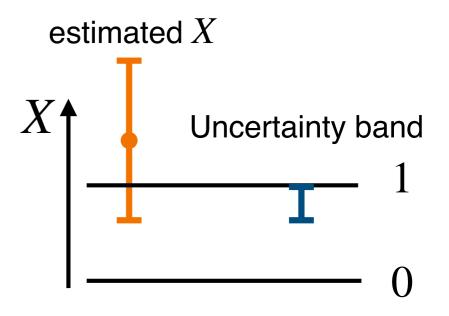
definition of $X: 0 \le X \le 1$

Range correction is important for X(3872) and $N\Omega$.

Application

Uncertainty band of X

 $\bar{X}_{u}(\xi) = \min\{X_{u}(\xi), 1\},\$ $\bar{X}_{l}(\xi) = \max\{X_{l}(\xi), 0\}.$ $\downarrow \bar{X}_{l}(\xi) \leq X \leq \bar{X}_{u}(\xi)$



•			
- com	compositeness X	bound state	
	$0.74 \le X \le 1$	d	
- X(38	$0.53 \le X \le 1$	X(3872)	
M. Takiza	$0.81 \le X \le 1$	$D_{s0}^{*}(2317)$	
	$0.55 \le X \le 1$	$D_{s1}(2460)$	
X(387)	$0.80 \le X \le 1$	$N\Omega$ dibaryon	
	$0.79 \le X \le 1$	$\Omega\Omega$ dibaryon	
	$0.74 \le X \le 1$	$^3_\Lambda { m H}$	
<u>.</u>	$0.93 \le X \le 1$	4 He dimer	

- composite dominant : 0.5 < X
- X(3872) model calculation

M. Takizawa and S. Takeuchi, PTEP 2013, 093D01 (2013), arXiv:1206.4877.

 $X(3872)\rangle = c_1 |c\bar{c}\rangle + c_2 |D^0\bar{D}^{*0}\rangle + c_3 |D^+D^{*-}\rangle$ $|c_2|^2 = X, \quad 0.759 \le X \le 0.897$

Consistent with the model calculation

Conclusion

T. Kinugawa, T. Hyodo, arXiv:2205.08470[hep-ph] accepted in Phys. Rev. C

- Weak-binding relation : observable rightarrow compositeness (X) $a_0 = R\left\{\frac{2X}{1+X} + O\left(\frac{R_{\text{typ}}}{R}\right)\right\}$
- We study the range correction to weak-binding relation.
- Improved weak-binding relation by redefinition of $R_{\rm typ}$:

$$R_{\text{typ}} = \max\left\{R_{\text{int}}, |r_e|, \cdots\right\}$$

- We find the region where only the improved weak-binding relation can be applied.

- The range correction is important for the reasonable estimation of X.

Structure of exotic hadrons by weak-binding relation with finite range correction

T. Kinugawa, T. Hyodo, arXiv:2205.08470[hep-ph] accepted in Phys. Rev. C

Tomona Kinugawa

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University June 30th HYP 2022

Numerical calculation

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

When dose the weak-binding relation work?

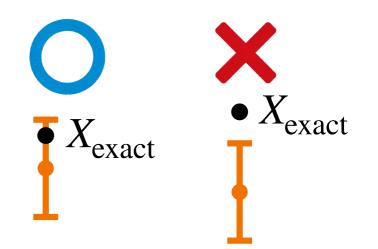
Estimation with correction terms ($\xi \equiv R_{typ}/R$): ^{Y. Kamiya and T. Hyodo, PTEP} _{2017, 023D02 (2017).}

Central value:
$$X_c = \frac{a_0/R}{2 - a_0/R}$$

 $X_{upper}(\xi) = \frac{a_0/R}{2 - a_0/R} + \xi, X_{lower}(\xi) = \frac{a_0/R}{2 - a_0/R} - \xi.$

Weak-binding relation works when...

$$X_{\text{lower}} < X_{\text{exact}} < X_{\text{upper}}$$



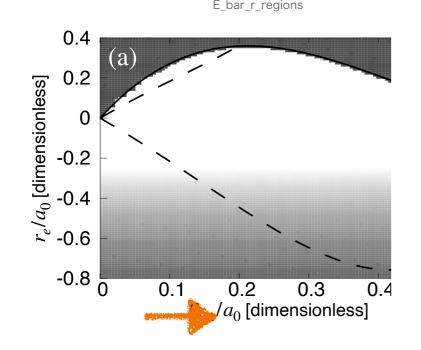
Numerical calculation

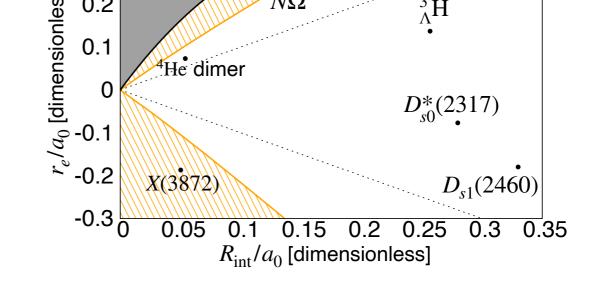
Effective range model
$$(R_{int} \neq 0)$$

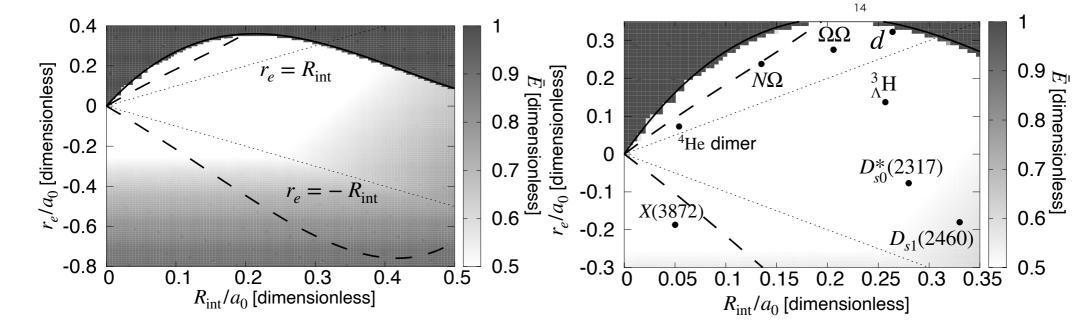
 $f(k; \lambda_0, \rho_0, \Lambda) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 + O\left(\frac{R_{int}}{R}\right) - ik \right]^{-1}$ (two length scales r_e and R_{int})
 $1/f(k = i/R) = 0$
 $-r_e \neq 0$ (range correction): $\xi_{r_e} = |r_e/R|$ Uncertainty from r_e
 $r_e < 0$ (effective range model)
 $-R_{int} \neq 0$: $\xi_{int} = R_{int}/R$. Uncertainty from R_{int}

- $X_{\text{exact}} = 1$

We search for the region of r_e and R_{int} in which validity condition are satisfied.







Another numerical calculation

