Machine Learning light hypernuclei

- We employ a feed-forward ANN to extrapolate at large model spaces the results of *ab-initio* hypernuclear NCSM calculations for the Λ separation energy B_{Λ} of the lightest hypernuclei, obtained in accessible HO basis spaces using chiral NN, NNN & YN interactions
- The overfitting problem is avoided by enlarging the size of the input dataset & by introducing a Gaussian noise during the training process of the neural network
- We find that a network with a single hidden layer of eight neurons is enough to extrapolate correctly the value of B_{Λ} to model spaces of size N_{max} =100

hα			Λ separation energ
N _{max}	bida har		
input layer	moden layer	output laye	r

Hypernucleus	ANN Prediction	Experimental Vaue
$^{3}_{\Lambda}H$	0.16 ± 0.01	0.13 ± 0.05
$^4_{\Lambda}H(0^+)$	2.47 ± 0.03	2.157 ± 0.077
$^{4}_{\Lambda}H(1)$	1.37 ± 0.03	1.067 ± 0.08
$^{4}_{\Lambda}He(0^{+})$	2.41 ± 0.04	2.39 ± 0.05
$^{4}_{\Lambda}He(1^{+})$	1.33 <u>+</u> 0.03	0.984 ± 0.05