Single- \& double-strangeness hypernuclei up to $A=8$ within chiral EFT

Hoai Le, IAS-4 \& IKP-3, Forschungszentrum Jülich, Germany
HYP2022, Prague, Czech Republic, June 27- July 1, 2022
collaborators: Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

BB interactions in χ EFT

(adapted from H. Krebs CD workshop, 18th November 2021)

- LECs are determined via a fit to experiment:
- ~5000 NN + Nd scattering data $+{ }^{2} \mathrm{H},{ }^{3} \mathrm{H} /{ }^{3} \mathrm{He} \rightarrow \mathrm{NN}$ forces up to $\mathrm{N}^{4} \mathrm{LO}+, 3 \mathrm{NF}$ up to $\mathrm{N}^{2} \mathrm{LO}$ (see E. Epelbaum talk)
- ~ 36 YN data $+{ }_{\Lambda}^{3} \mathrm{H} \rightarrow$ YN forces up to NLO (NLO13, NLO19) and $\mathrm{N}^{2} \mathrm{LO}$

Jacobi-NCSM approach

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

$$
\mathrm{H}=\mathrm{T}_{r e l}+\mathrm{V}^{\mathrm{NN}}+\mathrm{V}^{\mathrm{YN}}+\mathrm{V}^{\mathrm{NNN}}+\mathrm{V}^{\mathrm{YNN}}+\Delta M
$$

in a finite A-particle harmonic oscillator (HO) basis

- basis states for $S=-1$ systems:

$$
(\mathrm{A}-1) \mathrm{N}
$$

$$
|\underset{\Lambda(\Sigma)}{\longrightarrow}\rangle=|\mathcal{N} J T, \underbrace{\mathcal{N}_{A-1} J_{A-1} T_{A-1}}_{\text {antisym. }(A-1) N}, \underbrace{n_{Y} l_{Y} I_{Y} t_{Y}}_{\Lambda(\Sigma) \text { state }} ;\left(J_{A-1}\left(l_{Y} s_{Y}\right) I_{Y}\right) J,\left(T_{A-1} t_{Y}\right) T\rangle
$$

- intermediate bases for evaluating Hamiltonian:

- basis truncation: $\mathcal{N}=\mathcal{N}_{A-1}+2 n_{\lambda}+\lambda \leq \mathcal{N}_{\max } \Rightarrow E_{b}=E_{b}\left(\omega, \mathcal{N}_{\text {max }}\right)$
\rightarrow extrapolate in ω - and \mathcal{N}-spaces to obtain converged results (HL et al., EPJA (2020))

Convergence of E with respect to \mathcal{N}

- BB interactions contain short-range and tensor correlations that couple
low- and high-momentum states \longrightarrow NCSM calculations converge with respect to model space slowly

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements
\rightarrow observables (binding energies) are conserved due to unitarity of transformation
F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$
\begin{aligned}
\frac{d V(s)}{d s}=\left[\left[T_{\text {rel }}, V(s)\right], H(s)\right], \quad & H(s)=T_{r e l}+V(s)+\Delta M \\
& V(s)=V_{12}(s)+V_{13}(s)+V_{23}(s)+V_{123}(s), \quad V_{123} \equiv V_{N N N}\left(V_{Y N N}\right)
\end{aligned}
$$

- separate SRG flow equations for 2-body and 3-body interactions:

$$
\begin{align*}
\frac{d V^{N N}(s)}{d s} & =\left[\left[T^{N N}, V^{N N}\right], T^{N N}+V^{N N}\right] \\
\frac{d V^{Y N}(s)}{d s} & =\left[\left[T^{Y N}, V^{Y N}\right], T^{Y N}+V^{Y N}+\Delta M\right] \tag{1}\\
\frac{d V_{123}}{d s} & =\left[\left[T_{12}, V_{12}\right], V_{31}+V_{23}+V_{123}\right] \\
& +\left[\left[T_{31}, V_{31}\right], V_{12}+V_{23}+V_{123}\right] \\
& +\left[\left[T_{23}, V_{23}\right], V_{12}+V_{31}+V_{123}\right]+\left[\left[T_{\text {rel }}, V_{123}\right], H_{s}\right]
\end{align*}
$$

$$
+\left[\left[T_{31}, V_{31}\right], V_{12}+V_{23}+V_{123}\right] \quad \rightarrow \text { SRG-induced 3BFs are }
$$ generated even if $V_{123}^{\text {bare }}=0$

\Rightarrow no disconnected terms in $\frac{d V_{123}}{d s}$: avoid delta functions on the right hand side (S.K. Bogner et al PRC75 (2007), K. Hebeler PRC85 (2012))

- Eqs.(1) are solved by projecting on a partial-wave decomposed 3N (YNN) Jacobi-momentum basis

SRG evolution of NN, YN

- $\lambda=\left(4 \mu^{2} / s\right)^{1 / 4}, \quad[\lambda]=[p]: \lambda \sim$ width of the band-diagonal structure of V in p-space (S.K. Bogner et al., PRC 75 (2007))

$\mathrm{NN}: \mathrm{N}^{4} \mathrm{LO}+(450)$

YN: NLO19(500)

SRG evolution of $V^{N N N}\left(p q \alpha, p^{\prime} q^{\prime} \alpha^{\prime}\right)$

- hyperradius: $\xi^{2}=p^{2}+\frac{3}{4} q^{2} ; \quad \tan \theta=\frac{2 p}{\sqrt{3} q}\left(\theta=\frac{\pi}{12}\right) ;$

$$
\alpha=\alpha^{\prime}=1 \Rightarrow V_{123}=V_{123}\left(\xi^{\prime}, \xi\right)
$$

(K. Hebeler PRC85 (2012))

SRG-induced $V^{Y N N}\left(p q \alpha, p^{\prime} q^{\prime} \alpha^{\prime}\right)$

$\Lambda N N-\Sigma N N$

$$
\text { NN: } \mathrm{N}^{4} \mathrm{LO}+(450) ; \quad \mathrm{YN}: \mathrm{NLO} 19(500)
$$

A=3-5 hypernuclei with SRG-induced YNN

NN:SMS N ${ }^{4}$ LO+(450)
$3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
\rightarrow contributions of SRG-induced YNNN forces to $B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H},{ }_{\Lambda}^{5} \mathrm{He}\right)$ are negligible

Impact of YN interactions on $B_{\Lambda}(A \leq 5)$

- NLO13 and NLO19 are almost phase equivalent
(J.Haidenbauer et al., NPA 915 2019))
- NLO13 characterised by a stronger $\Lambda N-\Sigma N$ transition potential (especially in ${ }^{3} S_{1}$)
\longrightarrow manifest in higher-body observables

$$
\begin{aligned}
& { }_{\Lambda}^{4} \mathrm{He}\left(0^{+}\right): \quad \tilde{V}_{\Lambda N} \approx \frac{1}{2} V_{\Lambda N}^{s}+\frac{1}{2} V_{\Lambda N}^{t} \\
& { }_{\Lambda}^{4} \mathrm{He}\left(1^{+}\right): \quad \tilde{V}_{\Lambda N} \approx \frac{1}{6} V_{\Lambda N}^{s}+\frac{5}{6} V_{\Lambda N}^{t} \\
& { }_{\Lambda}^{5} \mathrm{He}: \quad \tilde{V}_{\Lambda N} \approx \frac{1}{4} V_{\Lambda N}^{s}+\frac{3}{4} V_{\Lambda N}^{t}
\end{aligned}
$$

NN:SMS N ${ }^{4}$ LO+(450)
\rightarrow NLO13-500
\rightarrow NLO13-550
\rightarrow NLO13-600

- NLO13-650
-t NLO19-500
-*- NLO19-550
-*- NLO19-600
- - NLO19-650
(HL et al., EPJA (2020))
- $B_{\Lambda}(\mathrm{NLO} 19)>B_{\Lambda}(\mathrm{NLO13}) \rightarrow$ possible contribution of chiral YNN force

Impact of YN interactions on $B_{\Lambda}(A \leq 5)$

- NLO13 and NLO19 are almost phase equivalent
(J.Haidenbauer et al., NPA 915 2019))
- NLO13 characterised by a stronger $\Lambda N-\Sigma N$ transition potential (especially in ${ }^{3} S_{1}$)
\longrightarrow manifest in higher-body observables

	${ }_{\Lambda}^{4} \mathrm{H}$		${ }_{\Lambda}^{5} \mathrm{He}$
NLO13(500)	1.551 ± 0.007	0.823 ± 0.003	2.22 ± 0.06
NLO19(500)	1.514 ± 0.007	1.27 ± 0.009	3.32 ± 0.03
Exp.	2.16 ± 0.08	1.07 ± 0.08	3.12 ± 0.02

NN:SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$
$+3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
+SRG-induced YNN
\rightarrow • chiral YNN force should contribute to B_{Λ} in ${ }_{\Lambda}^{4} \mathrm{H}\left(0^{+}, 1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He}$ differently

- using decuplet saturation scheme: 2LECs (1LEC if only $\Lambda N N$ is considered) can be fitted to

$$
B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H} /{ }_{\Lambda}^{4} \mathrm{He}\left(0^{+}, 1^{+}\right)\right) \text {or } B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H} / \mathrm{He}\left(0^{+}\right),{ }_{\Lambda}^{5} \mathrm{He}\left(1 / 2^{+}\right)\right)
$$

CSB in A=7 isotriplet: ${ }_{\Lambda}^{7} \mathrm{He},{ }_{\Lambda}^{7} \mathrm{Li}^{*},{ }_{\Lambda}^{7} \mathrm{Be}$

	$Y N$	ΔT	$\Delta N N_{\text {nucl }}$	$\Delta Y N_{\text {nucl }}$	$\Delta \mathrm{CSB}$
$\left({ }_{\Lambda}^{7} \mathrm{Be},{ }_{\Lambda}^{7} \mathrm{Li}^{*}\right)$	NLO13	10	-49	27	-12(30)
	CSB1	10	-49	7	-32(30)
	CSB2	5	-63	306	248(30)
	NLO19	8	-48	30	-10(30)
	CSB1	7	-48	32	-10(30)
	CSB2	8	-60	171	119(30)
	$\operatorname{Gal}^{(1)}$				-17
	Exp. ${ }^{(2)}$				-100 ± 90
$\left({ }_{\Lambda}^{7} \mathrm{Li}^{*},{ }_{\Lambda}^{7} \mathrm{He}\right)$	NLO13	9	-23	41	27(30)
	CSB1	9	-23	29	6(30)
	CSB2	6	-29	311	288(30)
	NLO19	8	-23	50	$35(30)$
	CSB1	8	-22	51	37(30)
	CSB2	8	-28	176	156(30)
	Exp. ${ }^{(2)}$				-20 ± 230

- CSB1 fixed to:

$$
\begin{aligned}
& \Delta E\left(0^{+}, A=4\right)=233 \pm 92 \\
& \Delta E\left(1^{+}, A=4\right)=-83 \pm 94
\end{aligned}
$$

- CSB2 fixed to:
$\Delta E\left(0^{+}, A=4\right)=350 \pm 50$
$\Delta E\left(1^{+}, A=4\right)=240 \pm 80$
J. Haidenbauer et al., FBS 62 (2021)
${ }^{1)}$ A. Gal PLB 744 (2015)
${ }^{(2)}$ E. Botta et al., NPA 960 (2017)
$\mathrm{NN}: \mathrm{SMS} \mathrm{N}^{4} \mathrm{LO}+(450)$
(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)
\rightarrow - CSB1 results for $A=4$ are in line with the presently extracted $\mathrm{CSB}\left({ }_{\Lambda}^{4} \mathrm{H} /{ }_{\Lambda}^{4} \mathrm{He}\right.$) (see J. Haidenbauer talk)
- CSB1 fits reproduce CSB in $A=7$ isotriplet

CSB in $\mathrm{A}=8$ doublet: ${ }_{\Lambda}^{8} \mathrm{Be},{ }_{\Lambda}^{8} \mathrm{Li}$

$\mathrm{NN}: \mathrm{SMS} \mathrm{N}^{4} \mathrm{LO}+(450)$

	$Y N$	ΔT	$\Delta N N_{\text {nucl }}$	$\Delta Y N_{\text {nucl }}$	Δ CSB
$\left({ }_{\Lambda}^{8} \mathrm{Be},{ }_{\Lambda}^{8} \mathrm{Li}\right)$	NLO13	15	-10	54	$59(50)$
	CSB1	$\mathbf{1 4}$	$\mathbf{- 1 0}$	$\mathbf{1 8 6}$	$\mathbf{1 9 0 (5 0)}$
	CSB2	6	-24	297	$279(50)$
	CSB1	6	-12	53	$47(50)$
	CSB2	13	-19	183	$177(50)$
	Hiyama $^{(3)}$				160
	Gal $^{(1)}$	11	(-81)	119	49
	Exp $^{(2)}$				40 ± 60

(HL, J. Haindenbauer, U-G. Meißner and A. Nogga in preparation)

- CSB1 fixed to:

$$
\begin{aligned}
& \Delta E\left(0^{+}, A=4\right)=233 \pm 92 \\
& \Delta E\left(1^{+}, A=4\right)=-83 \pm 94
\end{aligned}
$$

- CSB2 fixed to:
$\Delta E\left(0^{+}, A=4\right)=350 \pm 50$
$\Delta E\left(1^{+}, A=4\right)=240 \pm 80$
J. Haidenbauer et al., FBS 62 (2021)
${ }^{(1)}$ A. Gal PLB 744 (2015)
${ }^{2)}$ E. Botta et al., NPA 960 (2017)
${ }^{3)}$ E. Hiyama et al., PRC 80 (2009)
- CSB1 fits lead to a larger CSB in $\mathrm{A}=8$ doublet as compared to experiment
\rightarrow experimental CSB result for $A=8$ could be larger than $40 \pm 60 \mathrm{keV}$? CSB estimated for $A=4$ could still be too large or have different spin-dependence?

Results for $A=4-7 \quad \Xi$ hypernuclei

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 (2021)

	NLO(500)		others		NN:SMS ${ }^{4} \mathrm{LO}+(450)$
	$B_{\Xi}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$B_{\Xi}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	
${ }_{\Xi}^{4} \mathrm{H}\left(1^{+}, 0\right)$	0.48 ± 0.01	0.74	$0.36(16)(26)^{(1)}$	$0.06{ }^{(1)}$	${ }^{(1)} \mathrm{HAL} \mathrm{QCD}(\mathrm{t} / \mathrm{a}=12)$
			$10.20^{(2)}$	$0.89{ }^{(2)}$	${ }^{(2)}$ Nijmegen ESC08c
${ }_{\Xi}^{4} \mathrm{n}\left(0^{+}, 1\right)$	0.71 ± 0.08	0.2	$3.55{ }^{(2)}$	$0.43{ }^{(2)}$	E.Hiyama et al., PRL 124 (2020)
${ }_{\Xi}^{4} \mathrm{n}\left(1^{+}, 1\right)$	0.64 ± 0.11	0.01	$10.11^{(2)}$	$0.03{ }^{(2)}$	
${ }_{E}^{4} \mathrm{H}\left(0^{+}, 0\right)$	-	-	-	-	
${ }_{\Xi}^{5} \mathrm{H}\left(\frac{1}{2}^{+}, \frac{1}{2}\right)$	2.16 ± 0.10	0.19	$1.7{ }^{(3)}$	$0.2{ }^{(3)}$	${ }^{(3)}$ K. Myint, Y. Akaishi PTPS 117 (1994)
			$2.0{ }^{(4)}$	$0.45{ }^{(4)}$	${ }^{(4)}$ E. Friedman, A. Gal PLB 820(2021)
${ }_{\Xi}^{7} \mathrm{H}\left(\frac{1}{2}^{+}, \frac{3}{2}^{\prime}\right)$	3.50 ± 0.39	0.2	$3.15{ }^{(5)}$	$0.02^{(5)}$	${ }^{(5)}$ HAL QCD (t/a=11)
			$1.8{ }^{(6)}$	$2.64{ }^{(6)}$	${ }^{(6)}$ Nijmegen ESC04d
					H. Fujioko APFB2021, March (2021)

- employ YY NLO500; $\Xi \mathrm{N}-\Lambda \Lambda$ coupling is effectively incorporated into the strength of $V_{\Xi \mathrm{N}-\Xi \mathrm{N}}$
- $\Xi^{-} p$ Coulomb interaction contributes $\sim 200,600$ and 400 keV to $N N N \Xi,{ }_{\Xi}^{5} \mathrm{H},{ }_{\Xi}^{7} \mathrm{H}$

Results for A=4-7 Ξ hypernuclei

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 (2021)

	$\left\langle V^{S=-2}\right\rangle[\mathrm{MeV}]$					$\mathrm{E}[\mathrm{MeV}]$
	${ }^{11} S_{0}$	${ }^{31} S_{0}$	${ }^{13} S_{1}$	${ }^{33} S_{1}$	total	
${ }_{\Xi}^{4} \mathrm{H}\left(1^{+}, 0\right)$	-1.95	0.02	-0.7	-2.31	-5.21	-8.97
${ }_{\Xi}^{4} \mathrm{n}\left(0^{+}, 1\right)$	-0.6	0.25	-0.004	-0.74	-1.37	-9.07
${ }_{\Xi}^{4} \mathrm{n}\left(1^{+}, 1\right)$	-0.02	0.16	-0.13	-1.14	-1.30	-9.0
${ }_{\Xi}^{4} \mathrm{H}\left(0^{+}, 0\right)$	-0.002	0.08	-0.01	-0.006	-0.11	-6.94
${ }_{\Xi}^{5} \mathrm{H}\left(1 / 2^{+}, 1 / 2\right)$	-0.96	0.94	-0.58	-3.63	-4.88	-31.43
${ }_{\Xi}^{7} \mathrm{H}\left(1 / 2^{+}, 3 / 2\right)$	-1.23	1.79	-0.79	-6.74	-8.04	-33.22

$\rightarrow \quad \Xi N$ attraction in ${ }^{33} S_{1}$ is essential for the binding of A=4-7 Ξ-hypernuclei

Estimate partial-wave contributions

- Assumption: - no particle conversion contributing
- clear core- Ξ structure, both core nucleons and Ξ are in s-wave states
- $A=3$ system:

$$
\begin{aligned}
& { }_{\Xi}^{3} \mathrm{H}\left(\frac{1^{+}}{2}, \frac{1}{2}\right): \tilde{V}_{\Xi N} \approx \frac{3}{16} V_{\Xi N}^{11} S_{0}+\frac{9}{16} V_{\Xi N}^{{ }^{31} S_{0}}+\frac{1}{16} V_{\Xi N}^{13}+\frac{3}{16} V_{\Xi N}^{3 S_{1}} \\
& { }_{\Xi}^{3} \mathrm{H}\left(\frac{3^{+}}{2}, \frac{1}{2}\right): \tilde{V}_{\Xi N} \approx \frac{1}{4} V_{\Xi N}^{13} S_{1}+\frac{3}{4} V_{\Xi N}^{33 S_{1}}
\end{aligned}
$$

- $A=4$ system:

$$
\begin{aligned}
& { }_{\Xi}^{4} \mathrm{H}\left(1^{+}, 0\right): \quad \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{11}{ }^{11} S_{0}+\frac{1}{3} V_{\Xi N}^{13} S_{1}+\frac{1}{2} V_{\Xi N}^{33} S_{1} \\
& { }_{\Xi}^{4} \mathrm{H}\left(0^{+}, 1\right): \quad \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{11} S_{0}+\frac{1}{3} V_{\Xi N}^{31 S_{0}}+\frac{1}{2} V_{\Xi N}^{33 S_{1}} \\
& { }_{\Xi}^{4} \mathrm{H}\left(1^{+}, 1\right): \quad \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{31 S_{0}}+\frac{1}{6} V_{\Xi N}^{13} S_{1}+\frac{2}{3} V_{\Xi N}^{33 S_{1}} \\
& { }_{\Xi}^{4} \mathrm{H}\left(0^{+}, 0\right): \quad \tilde{V}_{\Xi N} \approx \frac{1}{2} V_{\Xi N}^{31 S_{0}}+\frac{1}{2} V_{\Xi N}^{13 S_{1}}
\end{aligned}
$$

- $A=5$ system:

$$
{ }_{\Xi}^{5} \mathrm{H}\left(\frac{1}{2}, \frac{1}{2}\right): \tilde{V}_{\Xi N} \approx \frac{1}{16} V_{\Xi N}^{11} S_{0}+\frac{3}{16} V_{\Xi N}^{3 I_{0}}+\frac{3}{16} V_{\Xi N}^{{ }^{13} S_{1}}+\frac{9}{16} V_{\Xi N}^{{ }^{33} S_{1}}
$$

Summary

study ${ }_{\Lambda}^{4} \mathrm{H}\left(0^{+}, 1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He}$ hypernuclei using chiral 2B \& 3N interactions + SRG-induced YNN

- contribution of SRG-induced YNNN force is negligible
- YN NLO13 \& NLO19 potentials predict different results for ${ }_{\Lambda}^{4} \mathrm{H}\left(1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He}$
\rightarrow YNN force is needed in order to properly describe light hypernuclei (work in progress)
study CSB in $A=7$ isotriplet and $A=8$ doublet
- CSB1 fits reproduce experimental results for $\mathrm{A}=4$ \& 7 systems but lead to a somewhat larger than the experimental CSB for the ${ }_{\Lambda}^{8} \mathrm{Be},{ }_{\Lambda}^{8} \mathrm{Li}$ doublet
investigate $A=4-7 \Xi$ hypernuclei using $\mathrm{NLO}(500) \Xi N$ potential
- found 3 loosely bound states $\left(1^{+}, 0\right),\left(0^{+}, 1\right),\left(1^{+}, 1\right)$ in $N N N \Xi$;

$$
{ }_{\Xi}^{5} \mathrm{H}\left(1 / 2^{+}, 1 / 2\right),{ }_{\Xi}^{7} \mathrm{H}\left(1 / 2^{+}, 3 / 2\right) \text { are more tightly bound }
$$

Thank you for the attention!

	NLO19(500)	NLO13(650)	Exp.	Hiyama [8]	
	$(\lambda=0.837)$	$(\lambda=0.913)$			
${ }_{\Lambda}^{7} \mathrm{Be}$	5.44 ± 0.03	5.58 ± 0.03	5.16 ± 0.08		5.21
${ }_{\Lambda}^{7} \mathrm{Li}^{*}$	5.49 ± 0.04	5.65 ± 0.03	5.26 ± 0.03	5.53 ± 0.13	5.28
${ }_{\Lambda}^{7} \mathrm{He}$	5.43 ± 0.06	5.63 ± 0.05		5.55 ± 0.1	5.36

	${ }_{\Lambda}^{8} \mathrm{Be}$	${ }_{\Lambda}^{8} \mathrm{Li}$
NLO13(600)		7.04 ± 0.08
$\mathrm{NLO} 13(600) \mathrm{CSB} 1$	7.13 ± 0.05	6.99 ± 0.09
$\mathrm{NLO} 13(600) \mathrm{CSB} 2$	7.56 ± 0.05	7.23 ± 0.04
Exp.	6.84 ± 0.05	6.80 ± 0.03
Hiyama	6.72	6.80

$\Xi \mathrm{N}$ phase shifts predicted by modern interactions

(* E. Hiyama et al. PRL 124, 092501 (2020))

(* E. Hiyama et al PRL 124, 092501 (2020))
$\longrightarrow \quad \bullet{ }^{11} S_{0}$ is rather attractive in NLO and HAL QCD, but repulsive in ESC08c

- ${ }^{33} S_{1}$ is strongly attractive in ESC08c (lead to a ΞN bound state), it is only moderately (weakly) attractive in NLO (HAL QCD)

