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BB interactions in EFTχ

• LECs are determined via a fit to experiment:

‣ ~5000 NN + Nd scattering data  +           NN forces up to , 3NF up to  2H, 3H/3He N4LO+ N2LO

‣  ~36 YN data +               YN forces up to  (NLO13, NLO19) and  3
ΛH NLO N2LO
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Jacobi-NCSM approach

H = Trel + VNN + VYN + VNNN + VYNN + ΔM

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

in a finite A-particle harmonic oscillator (HO) basis ΛN ↔ ΣN
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• basis truncation:   

extrapolate in - and -spaces to obtain converged results  ω 𝒩
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4

for 3N, YNN forces

4.1 Separation of NN , Y N and Y Y pairs
We now proceed to evaluate the Hamiltonian matrix elements for the wavefunction defined in eq. (4.6)

h (⇡JT )|H| (4.7)

|
�
↵⇤(Y1N)

�⇤(Y2)i = |↵⇤(Y1N)i ⌦ |Y2i

= |NJT,↵⇤(Y1N)
A�1 ñY2 ĨY2 t̃Y2 ; (J

⇤(Y1N)
A�1 (l̃Y2sY2)ĨY2)J, (T

⇤(Y1N)
A�1 t̃Y2)T i

⌘

N

N

Y1Y2

(4.8)
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Convergence of  with respect to E 𝒩

χN2LO(500)

1S0

3S1

3S1− 3D1

N2LO(500)

λ = 2.24 fm−1

4He4He

• BB interactions contain short-range and tensor correlations that couple
low- and high-momentum states          NCSM calculations converge with respect to model space slowly
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Similarity Renormalization Group (SRG)
Idea:  continuously apply unitary transformation to H to suppress off-diagonal matrix elements

F.J. Wegner NPB 90 (2000).  S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

dV(s)
ds

= [[Trel, V(s)], H(s)], H(s) = Trel + V(s) + ΔM

V(s) = V12(s) + V13(s) + V23(s) + V123(s), V123 ≡ VNNN (VYNN)

 observables (binding energies) are conserved due to unitarity of transformation 

•    separate SRG flow equations for 2-body and 3-body interactions:

no disconnected terms in    : avoid delta functions on the right hand side
dV123

ds⇒

• Eqs.(1) are solved by projecting on a partial-wave decomposed 3N (YNN) Jacobi-momentum basis 

(S.K. Bogner et al PRC75 (2007), K. Hebeler PRC85 (2012))

dVNN(s)
ds

= [[TNN, VNN], TNN + VNN]
dVYN(s)

ds
= [[TYN, VYN], TYN + VYN + ΔM]

dV123

ds
= [[T12, V12], V31 + V23 + V123]

+[[T31, V31], V12 + V23 + V123]
+[[T23, V23], V12 + V31 + V123] + [[Trel, V123], Hs]

Eqs.(1)

SRG-induced 3BFs are

 generated even if Vbare

123 = 0



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

1S0

3S1

3S1− 3D1

5

SRG evolution of NN, YN

• :  width of the band-diagonal structure of  in p-spaceλ = (4μ2/s)1/4, [λ] = [p] λ ∼ V
(S.K. Bogner et al., PRC 75 (2007))

NN: N4LO + (450)

YN: NLO19(500)

bare

bare

2.236 1.88

1.882.236
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SRG evolution of VNNN(pqα, p′￼q′￼α′￼)

(Jπ, T ) = (3/2+,1/2)

(Jπ, T ) = (1/2+,1/2)

(Jπ, T ) = (9/2+,1/2)

(Jπ, T ) = (7/2+,1/2)

(Jπ, T ) = (5/2+,1/2)
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SRG-evolved V123(ξ′ , ξ)

(Jπ, T ) = (3/2−,1)

(Jπ, T ) = (1/2−,1)

(Jπ, T ) = (9/2−,1)

 N2LO(550)

ξ′ 

(Jπ, T ) = (7/2−,1)

(Jπ, T ) = (5/2−,1)

• hyperradius: ξ2 = p2 +
3
4

q2; tan θ =
2p

3q
(θ =

π
12

); α = α′￼= 1 ⇒ V123 = V123(ξ′￼, ξ)

3N:  χN2LO(550)

ξ′￼[fm−1] ξ′￼[fm−1] ξ′￼[fm−1] ξ′￼[fm−1] ξ′￼[fm−1]

× 10−4

(K. Hebeler PRC85 (2012))
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SRG-induced VYNN(pqα, p′￼q′￼α′￼)

× 10−41.88 2.0 2.236 3.0

3 6 3 6 3 6 3 6
ξ [fm−1] ξ [fm−1] ξ [fm−1] ξ [fm−1]

(5/2+,1)

(5/2+,0)

(3/2+,1)

(3/2+,0)

(1/2+,0)

(1/2+,1)

ΛNN − ΛNN

3 6 3 6 3 6 3 6

ξ [fm−1] ξ [fm−1] ξ [fm−1] ξ [fm−1]

× 10−41.88 2.0 2.236 3.0

ΛNN − ΣNN

NN: N4LO + (450); YN: NLO19(500)
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A=3-5 hypernuclei with SRG-induced YNN

4
ΛH(0+,1/2) 5

ΛHe(1/2+,0)

contributions of SRG-induced YNNN forces to  are negligible BΛ(4
ΛH, 5

ΛHe)

NN:SMS +(450)N4LO
3N: (450)N2LO

3
ΛH(1/2+,0) 3

ΛH(1/2+,0)

(R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))
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Impact of YN interactions on BΛ(A ≤ 5)

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.
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(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.

71

NN:SMS +(450)N4LO

(HL et al., EPJA (2020))

possible contribution of chiral YNN force• BΛ(NLO19) > BΛ(NLO13)

12 J. Haidenbauer et al.: Hyperon-nucleon interaction
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Alexander et al.
Hauptman et al.
Piekenbrock

Λp -> Λp
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plab (MeV/c)
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Eisele et al.

Σ
+p -> Σ+p

Fig. 7. Uncertainty estimate for the Y N interaction in the Λp and Σ+p channels employing the method suggested in Ref. [22].
As basis the LO [15] and NLO19 interactions with cutoff Λ = 600 MeV are used. We only show the NLO result and its
uncertainty.

As exemplified by the predictions of the Jülich ’04 and
NSC97f potentials, typically phenomenological potentials
fail to produce a repulsive Σ-nuclear potential, cf. the cor-
responding results in Table 2. Because of that we refrain
from showing the pertinent curves in Fig. 9.

3.3 Three- and four-body systems

In this section, we present results for the 3
ΛH and 4

ΛHe
binding energies based on the NLO13 and NLO19 Y N po-
tentials and for the phenomenological Nijmegen (NSC97f)
[8] and Jülich ’04 [9] Y N interactions. We want to em-
phasize that the binding energies of the hypernuclei also
depend on the employed NN interaction and are affected
by three-nucleon forces (3NFs). However, detailed calcula-
tions show that this dependence enters through the bind-
ing of the 3N core nucleus. It is therefore useful to present
the results in terms of the difference of the core nucleus
binding energy and the hypernuclear binding energy, the
Λ separation energies, which are denoted by EΛ in the
following. This fact is exemplified in Table 3 for the Y N
interaction NLO19 with cutoff Λ = 650 MeV in combina-
tion with the high-order semilocal momentum-space regu-
larized chiral NN potential (SMS) [57] with different cut-
offs. One can see that the Λ separation energy for 3

ΛH
varies only by 10 keV. In case of 4

ΛHe the variations are in
the order of 80 and 40 keV for the 0+ and 1+ states, re-
spectively. Similarly, small variations have been found in

calculations where phenomenological NN potentials were
employed [6]. The addition of a 3NF changes the bind-
ing energy by approximately 800 keV (depending on the
chosen NN interaction) but the separation energy only by
20-50 keV [30]. In the following, we can therefore discuss
the predictions for the separation energies independently
from the NN and 3N interactions.

In former studies of hyperonic few-body systems, the
role of the spin-dependence of the ΛN potential for the
binding energies of s-shell hypernuclei has been discussed
in terms of the appropriately averaged effective ΛN in-
teraction [58–60]. We will do the same here. It is rather
instructive and allows for a good qualitative understand-
ing of the corresponding bound-state properties, though
one should certainly not forget that this is a simplifica-
tion. The relations in question are [58, 60]

3
ΛH : ṼΛN ≈

3

4
V s
ΛN +

1

4
V t
ΛN (9)

4
ΛHe (0+) : ṼΛN ≈

1

2
V s
ΛN +

1

2
V t
ΛN (10)

4
ΛHe (1+) : ṼΛN ≈

1

6
V s
ΛN +

5

6
V t
ΛN (11)

5
ΛHe : ṼΛN ≈

1

4
V s
ΛN +

3

4
V t
ΛN (12)

From these follows the well-known fact that the hyper-
triton is dominated by the ΛN singlet interaction while

• NLO13 and NLO19 are almost phase equivalent

• NLO13 characterised by a stronger  transition potential (especially in )  ΛN − ΣN 3S1

(J.Haidenbauer et al., NPA 915 2019))

manifest in higher-body observables 



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

10

Impact of YN interactions on BΛ(A ≤ 5)
• NLO13 and NLO19 are almost phase equivalent

• NLO13 characterised by a stronger  transition potential (especially in )  ΛN − ΣN 3S1

(J.Haidenbauer et al., NPA 915 2019))

                   


    

                

  

                      

                                 

1.27 ± 0.009

3.12 ± 0.02

2.22 ± 0.06

4
ΛH 5

ΛHe

0+ 1/2+

NLO13(500)

NLO19(500)

Exp.

3.32 ± 0.03

1.551 ± 0.007

1.514 ± 0.007

2.16 ± 0.08

0.823 ± 0.003

1.07 ± 0.08

1+

NN:SMS +(450)N4LO

+3N: (450)N2LO

• chiral YNN force should contribute to  in   differently BΛ
4
ΛH(0+,1+), 5

ΛHe

• using decuplet saturation scheme: 2LECs (1LEC if only  is considered) can be fitted to ΛNN

+SRG-induced YNN 

manifest in higher-body observables 

BΛ(4
ΛH/He(0+), 5

ΛHe(1/2+))orBΛ(4
ΛH/4

ΛHe(0+,1+))
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CSB in A=7 isotriplet: 7ΛHe, 7
ΛLi*, 7

ΛBe

Title Suppressed Due to Excessive Length 7

Table 5 CSB for A = 7. Values in keV. The experimental values are �100 ± 90 keV for
7

⇤Be-7⇤Li and �20± 230 keV for 7

⇤Li-
7

⇤He [4].

Y N potential �T �NNnucl �Y Nnucl � CSB

(7⇤Be,7⇤Li) NLO13(500) 6 -45 12 -27(30)

(7⇤Be,7⇤Li) NLO13(550) 8 -50 9 -33(30)

(7⇤Be,7⇤Li) NLO13(600) 10 -49 7 -32(30)

(7⇤Be,7⇤Li) NLO13(650) 10 -51 7 -34(30)

(7⇤Be,7⇤Li) NLO19(500) 7 -46 37 -2(30)

(7⇤Be,7⇤Li) NLO19(550) 6 -48 36 -6(30)

(7⇤Be,7⇤Li) NLO19(600) 7 -49 32 -10(30)

(7⇤Be,7⇤Li) NLO19(650) 8 -51 22 -21(30)

(7⇤Li,
7

⇤He) NLO13(500) 7 -20 22 9(30)

(7⇤Li,
7

⇤He) NLO13(550) 8 -23 19 4(30)

(7⇤Li,
7

⇤He) NLO13(600) 9 -23 20 6(30)

(7⇤Li,
7

⇤He) NLO13(650) 9 -24 20 5(30)

(7⇤Li,
7

⇤He) NLO19(500) 7 -21 53 39(30)

(7⇤Li,
7

⇤He) NLO19(550) 7 -21 50 36(30)

(7⇤Li,
7

⇤He) NLO19(600) 8 -22 51 37(30)

(7⇤Li,
7

⇤He) NLO19(650) 9 -23 37 23(30)

Table 6 Contributions to CSB for the A = 7 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 600 MeV. The results are for the original potentials
(without CSB force) and for the scenarios CSB1 and CSB2, see text.

Y N �T �NNnucl �Y Nnucl � CSB

(7⇤Be,7⇤Li) NLO13 10 -49 27 -12(30)

CSB1 10 -49 7 -32(30)

CSB2 5 -63 306 248(30)

NLO19 8 -48 30 -10(30)

CSB1 7 -48 32 -10(30)

CSB2 8 -60 171 119(30)

Gal -17

Exp. �100± 90

(7⇤Li,
7

⇤He) NLO13 9 -23 41 27(30)

CSB1 9 -23 29 6(30)

CSB2 6 -29 311 288(30)

NLO19 8 -23 50 35(30)

CSB1 8 -22 51 37(30)

CSB2 8 -28 176 156(30)

Exp. �20± 230

(7
ΛBe, 7

ΛLi*)

(7
ΛLi*, 7

ΛHe)

• CSB1 fits reproduce CSB in A=7 isotriplet    

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

• CSB2 fixed to: 
ΔE(0+, A = 4) = 350 ± 50
ΔE(1+, A = 4) = 240 ± 80

• CSB1 fixed to: 
ΔE(0+, A = 4) = 233 ± 92
ΔE(1+, A = 4) = −83 ± 94

(1)

(2)

(2)

A. Gal PLB 744 (2015)
(1)

E. Botta et al., NPA 960 (2017)
(2)

J. Haidenbauer et al., FBS 62 (2021)

• CSB1 results for A=4 are in line with the presently extracted CSB( )  (see J. Haidenbauer talk)4
ΛH/4

ΛHe

NN:SMS +(450)N4LO



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

12

• CSB2 fixed to: 
ΔE(0+, A = 4) = 350 ± 50
ΔE(1+, A = 4) = 240 ± 80

• CSB1 fixed to: 
ΔE(0+, A = 4) = 233 ± 92
ΔE(1+, A = 4) = −83 ± 94

(3)

(1)

(2)

E. Hiyama et al., PRC 80 (2009)(3)

J. Haidenbauer et al., FBS 62 (2021)

(8
ΛBe, 8

ΛLi)

(HL, J. Haindenbauer, U-G. Meißner and A. Nogga in preparation)

8 Hoai Le et al.

Table 7 A = 8. Experiments are taken from the compilation in Ref. [4]. The cited results by
Hiyama are those without CSB force.

8

⇤Be 8

⇤Li

NLO13(600) 7.04± 0.08

NLO13(600)CSB1 7.13± 0.05 6.99± 0.09

NLO13(600)CSB2 7.56± 0.05 7.23± 0.04

Exp. 6.84± 0.05 6.80± 0.03

Hiyama 6.72 6.80

Table 8 Contributions to CSB for the A = 8 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 600 MeV. The results are for the original potentials
(without CSB force) and for the scenarios CSB1 and CSB2, see text. Experimental value for
8

⇤Be-8⇤Li is 40± 60 keV.

Y N �T �NNnucl �Y Nnucl � CSB

(8⇤Be,8⇤Li) NLO13 15 -10 54 59(50)

CSB1 14 -10 186 190(50)

CSB2 6 -24 297 279(50)

NLO19 6 -12 53 47(50)

CSB1 6 -12 164 158(50)

CSB2 13 -19 183 177(50)

Hiyama 160

Gal 11 (-81) 119 49

Exp 40± 60

the one of the 4

⇤He 1+-0+ splitting at J-PARC [12], i.e. �E(0+) = 233 ± 92 keV
and �E(1+) = �83± 94 keV. It is the same scenario as considered by Gazda and
Gal in Ref. [15]. Below, we will refer to this choice as CSB1. In order to illustrate
the e↵ect of CSB in the A = 4 hypernuclei on the underlying ⇤N interaction, we
consider also two other scenarios. One (CSB3) corresponds to the situation after
the publication of the J-PARC experiment [12] but before the final results from
Mainz became available: �E(0+) = 350 ± 50 keV and �E(1+) = 30 ± 50 keV.
It is the status considered by Gazda and Gal in Ref. [31] and discussed in the
review [32]. In addition, we look at the situation up to 2014 (which will be labeled
CSB2), namely �E(0+) = 350± 50 keV and �E(1+) = 240± 80 keV [7]. It is the
one discussed by Gal in Ref. [33] and, of course, in all pre-2014 studies of CSB
in the A = 4 hypernuclei. Note that the CSB splitting in the 1+ states in the
scenarios CSB1 and CSB3 is compatible with zero, given the present experimental
uncertainty.

We determine the CSB LECs from perturbative calculations of the CSB con-
tribution to the 4

⇤H-4⇤He splittings for the three scenarios CSB1-3.
We want to emphasize that the predicted binding energies of the hypertriton

remain practically unchanged for the di↵erent considered scenarios for CSB. The

CSB in A=8 doublet: 8ΛBe, 8
ΛLi

• CSB1 fits lead to a larger CSB in A=8 doublet as compared to experiment 

experimental CSB result for A=8 could be larger than  keV?40 ± 60
CSB estimated for A=4 could still be too large or have different spin-dependence?

A. Gal PLB 744 (2015)
(1)

E. Botta et al., NPA 960 (2017)
(2)

NN:SMS +(450)N4LO
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Results for A=4-7   hypernucleiΞ

 HAL QCD (t/a=12)(1)

 Nijmegen ESC08c (2)

 K. Myint, Y. Akaishi  PTPS 117 (1994)(3)

E.Hiyama et al., PRL 124 (2020)

 E. Friedman, A. Gal  PLB 820(2021)(4)

H. Fujioko  APFB2021, March (2021)

 HAL QCD (t/a=11)(5)

 Nijmegen ESC04d (6)

8

NLO(500) others

B⌅ [MeV] � [MeV] B⌅ [MeV] � [MeV]

4
⌅H(1+, 0) 0.48± 0.01 0.74 0.36(16)(26)(1) 0.06(1)

10.20(2) 0.89(2)

4
⌅n(0+, 1) 0.71± 0.08 0.2 3.55(2) 0.43(2)

4
⌅n(1+, 1) 0.64± 0.11 0.01 10.11(2) 0.03(2)

4
⌅H(0+, 0) - - - -

5
⌅H(12

+
,
1
2 ) 2.16± 0.10 0.19 1.7(3) 0.2(3)

2.0(4) 0.45(4)

7
⌅H(12

+
,
3
2 ) 3.50± 0.39 0.2 3.15(5) 0.02(5)

1.8(6) 2.64(6)

B⌅ [MeV] � [MeV]

4
⌅H(1+, 0) 0.48± 0.01 0.74

4
⌅n(0+, 1) 0.71± 0.08 0.2

4
⌅n(1+, 1) 0.64± 0.11 0.01

4
⌅H(0+, 0) - -

5
⌅H(12

+
,
1
2 ) 2.16± 0.10 0.19

7
⌅H(12

+
,
3
2 ) 3.50± 0.39 0.2

Table 1: ⌅ separation energies B⌅ and estimated decay
widths � for A = 4� 7 ⌅ hypernuclei. All calculations
are based on the YY-⌅N interaction NLO(500) and the
NN interaction SMS N4LO+(450). Both potentials are
SRG-evolved to a flow parameter of �NN = �Y Y =
1.6 fm-1. The values of B⌅ in NNN⌅, 5

⌅H and 7
⌅H are

measured with respect to the binding energies of the
core nuclei 3H, 4He and 6He, respectively.

and 7
⌅H, however, its e↵ect is largely canceled by the

attraction in the 11
S0 channel.

Complementary to Table 2, the binding of the A =
4� 7 hypernuclei can also be understood from Table 3,

where probabilities of finding a ⌅N pair, P⌅N, in dif-
ferent partial-wave states are listed. One clearly notices
that, in most of the systems, a ⌅N pair is predomi-
nantly found in those channels with J  1 and in par-
ticular in the 33

S1, except for the unbound 4
⌅H(0

+
, 0)

state. In addition, the two extremely small probabili-
ties P⌅N(11S0) = 0.02% and P⌅N (33S1) = 0.11% in
4
⌅H(0+, 0) are obvious manifestations of the small ex-
pectation values V

S=�2(11S0) = �0.002 MeV and
V

S=�2(33S1) = �0.006 MeV listed in Table. 2. Fur-
thermore, the strong variation of P⌅N(11S0) in di↵erent
states of the A = 4� 7 hypernuclei clearly explains the
large di↵erence in the decay widths estimated for these
systems, see Table 1.

As discussed in Section 2, we had to omit the ⇤⇤�
⌅N coupling in the J-NCSM application and we com-
pensated that by a small modification of the ⌅N po-
tential strength in the 11

S0 state. It is reassuring to see
that the overall e↵ect of this partial wave on the bind-
ing energies is not too large. Specifically, the existence
of the predicted bound states does not depend on its
precise contribution, as can be read o↵ from Tables 2
and 3. In fact, the slightly more attractive 11

S0 interac-
tion predicted by the original ⌅N potential, see Fig. 1,
implies that all found ⌅ hypernuclei could be simply
minimally more bound.

•  Coulomb interaction contributes ~ 200, 600 and 400 keV to  Ξ−p NNNΞ, 5
ΞH, 7

ΞH
• employ YY NLO500;  coupling is effectively incorporated into the strength of ΞN−ΛΛ VΞN−ΞN

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 (2021) 

NN:SMS +(450)N4LO
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Results for A=4-7   hypernucleiΞ

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 (2021) 

9

hV S=�2i [MeV] E [MeV]

11
S0

31
S0

13
S1

33
S1 total

4
⌅H(1+, 0) -1.95 0.02 -0.7 -2.31 -5.21 -8.97

4
⌅n(0+, 1) -0.6 0.25 -0.004 -0.74 -1.37 -9.07

4
⌅n(1+, 1) -0.02 0.16 -0.13 -1.14 -1.30 -9.0

4
⌅H(0+, 0) -0.002 0.08 -0.01 -0.006 -0.11 -6.94

5
⌅H(1/2+, 1/2) -0.96 0.94 -0.58 -3.63 -4.88 -31.43

7
⌅H(1/2+, 3/2) -1.23 1.79 -0.79 -6.74 -8.04 -33.22

U⌅(p⌅ = 0)* -3.15 9.64 -3.24 -11 -8.8

V
S=�2 E

11
S0

31
S0

13
S1

33
S1 total

4
⌅H(1+, 0) -1.95 0.02 -0.7 -2.31 -5.21 -8.97

4
⌅n(0+, 1) -0.6 0.25 -0.004 -0.74 -1.37 -9.07

4
⌅n(1+, 1) -0.02 0.16 -0.13 -1.14 -1.30 -9.0

4
⌅H(0+, 0) -0.002 0.08 -0.01 -0.006 -0.11 -6.94

5
⌅H(1/2+, 1/2) -0.96 0.94 -0.58 -3.63 -4.88 -31.43

7
⌅H(1/2+, 3/2) -1.23 1.79 -0.79 -6.74 -8.04 -33.22

Table 2: Contributions of di↵erent partial waves to
hV S=�2i (first five columns), and the total binding en-
ergy (last column) for the A = 4 � 7 ⌅ hypernuclei.
The results are extracted at N = 28, ! = 10 MeV for
NNN⌅, at N = 14, ! = 16 MeV for 5

⌅H and at N = 10,
! = 16 MeV for 7

⌅H. All energies are given in MeV.
Same interactions as in Table 1. Note that the calcu-
lated binding energy of 3He(3H) is �7.79 (�8.50) MeV.

evolution on the ⌅ separation energies is in general
small, but, it is slightly larger than that observed for
⇤⇤ hypernuclei. We found three loosely bound states
(1+, 0), (0+, 1) and (1+, 1) for the NNN⌅ system and
more tightly bound 5

⌅H, 7
⌅H hypernuclei. These ⌅ sys-

tems are bound predominantly due to the attraction
of the chiral ⌅N potential in the 33

S1 channel. On the
other hand, the repulsive nature in 31

S0 prevents the
binding of the NNN⌅(0+, 0) state. All the investigated
⌅ bound states are predicted to have very small decay
widths.

In view of these results, which are based on an inter-
action that is fully consistent with presently available
experimental constraints, and well in line with current
lattice QCD results [24], it seems likely that light ⌅ hy-
pernuclei exist. Experimental confirmation is certainly
challenging. However, theoretical estimates for yields of
A = 4 hypernuclei [52] as well as actual measurements
of 4

⇤H, 4⇤He by the STAR Collaboration [53] raise hopes
that NNN⌅ bound states can be detected in heavy ion
collisions in the not too far future. Also a bound 7

⌅H sys-
tem could be produced and studied in the 7Li(K�

,K
+)

reaction, cf. the proposal P75 for J-PARC [16]. Once
these new experimental results are available, they will
provide new insights into the properties of S = �2 BB
interactions. The current manuscript sets up a frame-
work that allows one to exploit these insights to con-
strain BB interactions in the future.

 attraction in  is essential for the binding of A=4-7  -hypernucleiΞN 33S1 Ξ
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Estimate partial-wave contributions 

• A=3 system:

3
ΞH(

1
2

+
,

1
2

) : ṼΞN ≈
3

16
V

11S0
ΞN +

9
16

V
31S0
ΞN +

1
16

V
13S1
ΞN +

3
16

V
33S1
ΞN

3
ΞH(

3
2

+
,

1
2

) : ṼΞN ≈
1
4

V
13S1
ΞN +

3
4

V
33S1
ΞN

• A=4 system:

4
ΞH(1+,0) : ṼΞN ≈

1
6

V
11S0
ΞN +

1
3

V
13S1
ΞN +

1
2

V
33S1
ΞN

4
ΞH(0+,1) : ṼΞN ≈

1
6

V
11S0
ΞN +

1
3

V
31S0
ΞN +

1
2

V
33S1
ΞN

4
ΞH(1+,1) : ṼΞN ≈

1
6

V
31S0
ΞN +

1
6

V
13S1
ΞN +

2
3

V
33S1
ΞN

4
ΞH(0+,0) : ṼΞN ≈

1
2

V
31S0
ΞN +

1
2

V
13S1
ΞN

• A=5 system:

5
ΞH(

1
2

+
,

1
2

) : ṼΞN ≈
1
16

V
11S0
ΞN +

3
16

V
31S0
ΞN +

3
16

V
13S1
ΞN +

9
16

V
33S1
ΞN

• Assumption:  
 ‣ no particle conversion contributing 

‣ clear core-  structure, both core nucleons and  are in s-wave statesΞ Ξ
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Summary

                   Thank you for the attention!

• found 3 loosely bound states   in (1+,0), (0+,1), (1+,1) NNNΞ;

,    are more tightly bound5
ΞH(1/2+,1/2) 7

ΞH(1/2+,3/2)

• CSB1 fits reproduce experimental results for A=4 & 7 systems  

 study CSB in A=7 isotriplet and A=8 doublet

 study   hypernuclei using chiral 2B & 3N interactions + SRG-induced YNN  4
ΛH(0+,1+), 5

ΛHe

•  contribution of SRG-induced YNNN force is negligible 

• YN NLO13 & NLO19 potentials predict different results for 4ΛH(1+), 5
ΛHe

but lead to a somewhat larger than the experimental CSB for the  doublet8
ΛBe, 8

ΛLi

investigate A=4-7  hypernuclei using NLO(500)  potentialΞ ΞN

YNN force is needed in order to properly describe light hypernuclei (work in progress)
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6 Hoai Le et al.

Table 2 CSB of 4

⇤He and 4

⇤H for the 0+ state. First three entries are without CSB force and
taken from Refs. [18] and [26], respectively. All values in MeV, �’s in keV. The experimental
value is �E(0+) = 233± 92 keV.

interaction 4

⇤He 4

⇤H
4

⇤He 4

⇤He 4

⇤H �E⇤ �E⇤

FY [18] NCSM [26] FY [18] FY [18] NCSM

NLO13(500) 1.71 1.66 1.69 1.82 1.56 265(14) 208(20)

NLO13(550) 1.51 1.45 1.83 1.62 1.36 261(14) 234(20)

NLO13(600) 1.48 1.43 1.94 1.59 1.34 256(14) 243(20)

NLO13(650) 1.50 1.45 1.98 1.61 1.36 249(14) 240(20)

NLO19(500) 1.65 1.63 1.44 1.77 1.52 249(14) 190(20)

NLO19(550) 1.55 1.53 1.33 1.67 1.42 252(14) 184(20)

NLO19(600) 1.47 1.44 1.44 1.58 1.34 243(14) 199(20)

NLO19(650) 1.54 1.50 1.71 1.65 1.40 250(14) 220(20)

Table 3 CSB of 4

⇤He and 4

⇤H for the 1+ state. First three entries are without CSB force! All
values in MeV, �’s in keV. The experimental value is �E(1+) = �83± 94 keV.

interaction 4

⇤He 4

⇤H
4

⇤He 4

⇤He 4

⇤H �E⇤ �E⇤

FY [18] NCSM [26] FY [18] FY [18] NCSM

NLO13(500) 0.80 0.78 0.98 0.76 0.82 -66(14) -90(20)

NLO13(550) 0.59 0.57 0.93 0.56 0.61 -56(14) -95(20)

NLO13(600) 0.59 0.56 0.94 0.55 0.60 -53(14) -92(20)

NLO13(650) 0.62 0.60 0.93 0.59 0.64 -55(14) -90(20)

NLO19(500) 1.23 1.23 1.01 1.19 1.27 -75(14) -67(20)

NLO19(550) 1.25 1.24 0.94 1.21 1.28 -72(14) -69(20)

NLO19(600) 1.06 1.05 0.92 1.03 1.09 -67(14) -72(20)

NLO19(650) 0.92 0.91 0.91 0.89 0.96 -69(14) -75(20)

Table 4 A = 7. Experiments are taken from the compilation in Ref. [4]. The cited results by
Hiyama are those without CSB force.

NLO19(500) NLO13(650) Exp. Hiyama [8]

(� = 0.837) (� = 0.913)
7

⇤Be 5.44± 0.03 5.58± 0.03 5.16± 0.08 5.21
7

⇤Li
⇤ 5.49± 0.04 5.65± 0.03 5.26± 0.03 5.53± 0.13 5.28

7

⇤He 5.43± 0.06 5.63± 0.05 5.55± 0.1 5.36

hypernuclei [18], defined in the usual way in terms of the separation energies

�E(0+) = E
0
+

⇤ (4⇤He)� E
0
+

⇤ (4⇤H),

�E(1+) = E
1
+

⇤ (4⇤He)� E
1
+

⇤ (4⇤H) . (1)

In our principal results, we aim at a reproduction of the present experimental
situation, based on the recent measurements of the 4

⇤H 0+ state in Mainz [14] and

8 Hoai Le et al.

Table 7 A = 8. Experiments are taken from the compilation in Ref. [4]. The cited results by
Hiyama are those without CSB force.

8

⇤Be 8

⇤Li

NLO13(600) 7.04± 0.08

NLO13(600)CSB1 7.13± 0.05 6.99± 0.09

NLO13(600)CSB2 7.56± 0.05 7.23± 0.04

Exp. 6.84± 0.05 6.80± 0.03

Hiyama 6.72 6.80

Table 8 Contributions to CSB for the A = 8 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 600 MeV. The results are for the original potentials
(without CSB force) and for the scenarios CSB1 and CSB2, see text. Experimental value for
8

⇤Be-8⇤Li is 40± 60 keV.

Y N �T �NNnucl �Y Nnucl � CSB

(8⇤Be,8⇤Li) NLO13 15 -10 54 59(50)

(8⇤Be,8⇤Li) CSB1 14 -10 186 190(50)

(8⇤Be,8⇤Li) CSB2 6 -24 297 279(50)

(8⇤Be,8⇤Li) NLO19 6 -12 53 47(50)

(8⇤Be,8⇤Li) CSB1 6 -12 164 158(50)

(8⇤Be,8⇤Li) CSB2 13 -19 183 177(50)

the one of the 4

⇤He 1+-0+ splitting at J-PARC [12], i.e. �E(0+) = 233 ± 92 keV
and �E(1+) = �83± 94 keV. It is the same scenario as considered by Gazda and
Gal in Ref. [15]. Below, we will refer to this choice as CSB1. In order to illustrate
the e↵ect of CSB in the A = 4 hypernuclei on the underlying ⇤N interaction, we
consider also two other scenarios. One (CSB3) corresponds to the situation after
the publication of the J-PARC experiment [12] but before the final results from
Mainz became available: �E(0+) = 350 ± 50 keV and �E(1+) = 30 ± 50 keV.
It is the status considered by Gazda and Gal in Ref. [31] and discussed in the
review [32]. In addition, we look at the situation up to 2014 (which will be labeled
CSB2), namely �E(0+) = 350± 50 keV and �E(1+) = 240± 80 keV [7]. It is the
one discussed by Gal in Ref. [33] and, of course, in all pre-2014 studies of CSB
in the A = 4 hypernuclei. Note that the CSB splitting in the 1+ states in the
scenarios CSB1 and CSB3 is compatible with zero, given the present experimental
uncertainty.

We determine the CSB LECs from perturbative calculations of the CSB con-
tribution to the 4

⇤H-4⇤He splittings for the three scenarios CSB1-3.

We want to emphasize that the predicted binding energies of the hypertriton
remain practically unchanged for the di↵erent considered scenarios for CSB. The
variations are in the order of at most 30 keV, and thus remain well within the
experimental uncertainty. This is expected for a T = 0 ⇤np state where the ⇤p

and ⇤n interactions are basically averaged.
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6

N phase shifts predicted by modern interactionsΞ

NLO(500) & HAL QCD* Nijmegen ESC08c*

(* E. Hiyama et al. PRL 124, 092501 (2020)) 

•   is rather attractive in NLO and HAL QCD, but repulsive in ESC08c11S0

•  is strongly attractive in ESC08c (lead to a  bound state), 

it is only moderately (weakly) attractive in NLO (HAL QCD)

33S1 ΞN

(* E. Hiyama et al PRL 124, 092501 (2020)) 


