

Single- & double-strangeness hypernuclei up to A=8 within chiral EFT

Hoai Le, IAS-4 & IKP-3, Forschungszentrum Jülich, Germany HYP2022, Prague, Czech Republic, June 27- July 1, 2022

collaborators: Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

BB winterfeactions in χ EFT Two-nucleon force

Three-nucleon force Three-nucleon force

Jacobi-NCSM approach

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

$$H = T_{rel} + V^{NN} + V^{YN} + V^{NNN} + V^{YNN} + \Delta M$$

in a finite A-particle harmonic oscillator (HO) basis
basis states for $S = -1$ systems:

$$\stackrel{(A-1)N}{(A-1)N} = |\mathcal{N}JT, \mathcal{N}_{A-1}J_{A-1}T_{A-1}, \underbrace{n_{Y}l_{Y}t_{Y}}_{\Lambda(\Sigma) \text{ state}} (J_{A-1}(l_{Y}s_{Y})l_{Y})J, (T_{A-1}t_{Y})T)$$

intermediate bases for evaluating Hamiltonian:

$$\stackrel{(A-1)N}{(A-1)N} \underbrace{for NN, YN \text{ forces}}_{(Y = \Lambda, \Sigma)} \underbrace{for NN, YN \text{ forces}}_{(A-3)N} \underbrace{for 3N, YNN \text{ forces}}_{(A-3)N} \underbrace{for 3N, YN \text{ forces}}_{(A-3)N} \underbrace{for 3N, YN \text{ forces}_{(A-3)N} \underbrace{for 3$$

basis truncation: $\mathcal{N} = \mathcal{N}_{A-1} + 2n_{\lambda} + \lambda \leq \mathcal{N}_{max} \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$

 \rightarrow extrapolate in ω - and \mathcal{N} -spaces to obtain converged results (HL et al., EPJA (2020))

Convergence of E with respect to ${\mathscr N}$

Mitglied der Helmholtz-Gemeinschaft

BB interactions contain **short-range and tensor** correlations that couple low- and high-momentum states — NCSM calculations **converge with respect to model space slowly**

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements

→ observables (binding energies) are conserved due to unitarity of transformation

F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$\frac{dV(s)}{ds} = \left[\left[T_{rel}, V(s) \right], H(s) \right], \qquad H(s) = T_{rel} + V(s) + \Delta M$$
$$V(s) = V_{12}(s) + V_{13}(s) + V_{23}(s), \quad V_{123} \equiv V_{NNN} \left(V_{YNN} \right)$$

• separate SRG flow equations for 2-body and 3-body interactions:

$$\frac{dV^{NN}(s)}{ds} = [[T^{NN}, V^{NN}], T^{NN} + V^{NN}]$$

$$\frac{dV^{YN}(s)}{ds} = [[T^{YN}, V^{YN}], T^{YN} + V^{YN} + \Delta M]$$

$$\frac{dV_{123}}{ds} = [[T_{12}, V_{12}], V_{31} + V_{23} + V_{123}]$$

$$+ [[T_{31}, V_{31}], V_{12} + V_{23} + V_{123}]$$

$$+ [[T_{23}, V_{23}], V_{12} + V_{31} + V_{123}] + [[T_{rel}, V_{123}], H_s]$$
Eqs.(1)
$$SRG-induced 3BFs are generated even if V_{123}^{bare} = 0$$

⇒ no disconnected terms in $\frac{dV_{123}}{ds}$: avoid delta functions on the right hand side (S.K. Bogner et al PRC75 (2007), K. Hebeler PRC85 (2012))

• Eqs.(1) are solved by projecting on a partial-wave decomposed 3N (YNN) Jacobi-momentum basis

SRG evolution of NN, YN

• $\lambda = (4\mu^2/s)^{1/4}$, $[\lambda] = [p]$: $\lambda \sim$ width of the band-diagonal structure of *V* in p-space

(S.K. Bogner et al., PRC 75 (2007))

Witglied der Helmholtz-Gemeinschaft

6

NN: $N^4LO + (450)$; YN: NLO19(500)

A=3-5 hypernuclei with SRG-induced YNN

► contributions of SRG-induced YNNN forces to $B_{\Lambda}(^{4}_{\Lambda}H, ^{5}_{\Lambda}He)$ are negligible

(R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))

Impact of YN interactions on $B_{\Lambda}(A \leq 5)$

• NLO13 and NLO19 are almost phase equivalent

(J.Haidenbauer et al., NPA 915 2019))

- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in ${}^{3}S_{1}$)
 - manifest in higher-body observables

 $B_{\Lambda}(NLO19) > B_{\Lambda}(NLO13) \longrightarrow$ possible contribution of chiral YNN force

Impact of YN interactions on $B_{\Lambda}(A \leq 5)$

NLO13 and NLO19 are almost phase equivalent

(J.Haidenbauer et al., NPA 915 2019))

- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in ${}^{3}S_{1}$)
 - manifest in higher-body observables

	$^4_\Lambda { m H}$		$^{5}_{\Lambda}$ He	
	0+	1+	1/2+	
NLO13(500)	1.551 ± 0.007	0.823 ± 0.003	2.22 ± 0.06	NN:SMS N ⁴ LO+(450)
NLO19(500)	1.514 ± 0.007	1.27 ± 0.009	3.32 ± 0.03	+3N: N ² LO(450) +SRG-induced YNN
Exp.	2.16 ± 0.08	1.07 ± 0.08	3.12 ± 0.02	

- chiral YNN force should contribute to B_{Λ} in ${}^{4}_{\Lambda}$ H(0⁺,1⁺), ${}^{5}_{\Lambda}$ He differently
 - using decuplet saturation scheme: 2LECs (1LEC if only ΛNN is considered) can be fitted to $B_{\Lambda}({}^{4}_{\Lambda}H/{}^{4}_{\Lambda}He(0^{+},1^{+}))$ or $B_{\Lambda}({}^{4}_{\Lambda}H/He(0^{+}), {}^{5}_{\Lambda}He(1/2^{+}))$

CSB in A=7 isotriplet: $^{7}_{\Lambda}$ He, $^{7}_{\Lambda}$ Li*, $^{7}_{\Lambda}$ Be

	YN	ΔT	ΔNN_{nucl}	$\Delta Y N_{nucl}$	Δ CSB
	NLO13	10	-49	27	-12(30)
	CSB1	10	-49	7	-32(30)
	CSB2	5	-63	306	248(30)
$(^{7}_{\Lambda}\text{Be}, ^{7}_{\Lambda}\text{Li}^{*})$	NLO19	8	-48	30	-10(30)
$(\Lambda \mathbf{De}, \Lambda \mathbf{LI}^{*})$	CSB1	7	-48	32	-10(30)
	CSB2	8	-60	171	119(30)
	Gal ⁽¹⁾				-17
	Exp ⁽²⁾				-100 ± 90
	NLO13	9	-23	41	27(30)
$(^{7}_{\Lambda}\text{Li*}, ^{7}_{\Lambda}\text{He})$	CSB1	9	-23	29	6(30)
	CSB2	6	-29	311	288(30)
	NLO19	8	-23	50	35(30)
	CSB1	8	-22	51	37 (30)
	CSB2	8	-28	176	156(30)
	$\operatorname{Exp}^{(2)}$				-20 ± 230

- **CSB1** fixed to: $\Delta E(0^+, A = 4) = 233 \pm 92$ $\Delta E(1^+, A = 4) = -83 \pm 94$
- CSB2 fixed to: $\Delta E(0^+, A = 4) = 350 \pm 50$ $\Delta E(1^+, A = 4) = 240 \pm 80$
- J. Haidenbauer et al., FBS 62 (2021)

⁽¹⁾A. Gal PLB 744 (2015)
 ⁽²⁾E. Botta et al., NPA 960 (2017)

NN:SMS N⁴LO+(450)

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

- **CSB1** results for A=4 are in line with the presently extracted $CSB(^{4}_{\Lambda}H/^{4}_{\Lambda}He)$ (see J. Haidenbauer talk)
- **CSB1** fits reproduce CSB in A=7 isotriplet

CSB in A=8 doublet: ${}^{8}_{\Lambda}$ Be, ${}^{8}_{\Lambda}$ Li

NN:SMS N⁴LO+(450)

	· · · ·				
	YN	ΔT	ΔNN_{nucl}	$\Delta Y N_{nucl}$	$\Delta \text{ CSB}$
	NLO13	15	-10	54	59(50)
	CSB1	14	-10	186	190(50)
	CSB2	6	-24	297	279(50)
(8 D 8 T 1)	NLO19	6	-12	53	47(50)
$(^{8}_{\Lambda}\text{Be}, ^{8}_{\Lambda}\text{Li})$	CSB1	6	-12	164	158(50)
	CSB2	13	-19	183	177(50)
	Hiyama ⁽³⁾				160
	Gal ⁽¹⁾	11	(-81)	119	49
	Exp ⁽²⁾				40 ± 60

(HL, J. Haindenbauer, U-G. Meißner and A. Nogga in preparation)

• **CSB1** fixed to: $\Delta E(0^+, A = 4) = 233 \pm 92$ $\Delta E(1^+, A = 4) = -83 \pm 94$

• CSB2 fixed to: $\Delta E(0^+, A = 4) = 350 \pm 50$ $\Delta E(1^+, A = 4) = 240 \pm 80$

J. Haidenbauer et al., FBS 62 (2021)

- **CSB1** fits lead to a larger CSB in A=8 doublet as compared to experiment
 - experimental CSB result for A=8 could be larger than 40 ± 60 keV?
 - CSB estimated for A=4 could **still be too large** or have **different spin-dependence**?

Results for A=4-7 Ξ hypernuclei

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 (2021)

	NLO(500)		others	
	B_{Ξ} [MeV]	$\Gamma \; [{\rm MeV}]$	B_{Ξ} [MeV]	$\Gamma \; [{\rm MeV}]$
$\frac{4}{\Xi}$ H(1 ⁺ ,0)	0.48 ± 0.01	0.74	$0.36(16)(26)^{(1)}$	0.06 ⁽¹⁾
			$10.20^{(2)}$	0.89 ⁽²⁾
$\frac{4}{\Xi}n(0^+,1)$	0.71 ± 0.08	0.2	$3.55^{(2)}$	0.43 ⁽²⁾
$\frac{4}{\Xi}$ n(1 ⁺ ,1)	0.64 ± 0.11	0.01	$10.11^{(2)}$	0.03 ⁽²⁾
$\frac{4}{\Xi}H(0^+,0)$	-	-	-	-
${5 \over \Xi} \mathrm{H}({1 \over 2}^+,{1 \over 2})$	2.16 ± 0.10	0.19	1.7 ⁽³⁾	0.2 ⁽³⁾
			$2.0^{(4)}$	0.45 ⁽⁴⁾
$\frac{7}{\Xi}\mathrm{H}(\frac{1}{2}^+,\frac{3}{2})$	3.50 ± 0.39	0.2	$3.15^{(5)}$	0.02 ⁽⁵⁾
			$1.8^{(6)}$	$2.64^{(6)}$

NN:SMS N⁴LO+(450)

⁽¹⁾ HAL QCD (t/a=12)

⁽²⁾ Nijmegen ESC08cE.Hiyama et al., PRL 124 (2020)

⁽³⁾ K. Myint, Y. Akaishi PTPS 117 (1994)
⁽⁴⁾ E. Friedman, A. Gal PLB 820(2021)
⁽⁵⁾ HAL QCD (t/a=11)
⁽⁶⁾ Nijmegen ESC04d
H. Fuijoko APFB2021, March (2021)

- employ YY NLO500; $\Xi N \Lambda \Lambda$ coupling is effectively incorporated into the strength of $V_{\Xi N \Xi N}$
- $\Xi^{-}p$ Coulomb interaction contributes ~ 200, 600 and 400 keV to $NN\Xi$, ${}_{\Xi}^{5}H$, ${}_{\Xi}^{7}H$

Results for A=4-7 Ξ hypernuclei

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 (2021)

	$\langle V^{S=-2} \rangle [\text{MeV}]$					E [MeV]
	$^{11}S_{0}$	${}^{31}S_0$	$^{13}S_{1}$	${}^{33}S_1$	total	
$\frac{4}{\Xi}\mathrm{H}(1^+,0)$	-1.95	0.02	-0.7	-2.31	-5.21	-8.97
$\frac{4}{\Xi}\mathbf{n}(0^+,1)$	-0.6	0.25	-0.004	-0.74	-1.37	-9.07
$\frac{4}{\Xi}\mathbf{n}(1^+,1)$	-0.02	0.16	-0.13	-1.14	-1.30	-9.0
$\frac{4}{\Xi}$ H(0 ⁺ ,0)	-0.002	0.08	-0.01	-0.006	-0.11	-6.94
$\frac{5}{\Xi}$ H(1/2 ⁺ , 1/2)	-0.96	0.94	-0.58	-3.63	-4.88	-31.43
$\frac{7}{\Xi}$ H(1/2 ⁺ , 3/2)	-1.23	1.79	-0.79	-6.74	-8.04	-33.22

 \rightarrow ΞN attraction in ${}^{33}S_1$ is essential for the binding of A=4-7 Ξ -hypernuclei

Estimate partial-wave contributions

- Assumption: no particle conversion contributing
 - clear core- Ξ structure, both core nucleons and Ξ are in s-wave states
- A=3 system:

$${}^{3}_{\Xi} H(\frac{1}{2}^{+}, \frac{1}{2}): \tilde{V}_{\Xi N} \approx \frac{3}{16} V_{\Xi N}^{^{11}S_{0}} + \frac{9}{16} V_{\Xi N}^{^{31}S_{0}} + \frac{1}{16} V_{\Xi N}^{^{13}S_{1}} + \frac{3}{16} V_{\Xi N}^{^{33}S_{1}}$$
$${}^{3}_{\Xi} H(\frac{3}{2}^{+}, \frac{1}{2}): \tilde{V}_{\Xi N} \approx \frac{1}{4} V_{\Xi N}^{^{13}S_{1}} + \frac{3}{4} V_{\Xi N}^{^{33}S_{1}}$$

• A=4 system:

$$\begin{split} & \frac{4}{\Xi} \mathrm{H}(1^+, 0): \ \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{^{11}S_0} \ + \ \frac{1}{3} V_{\Xi N}^{^{13}S_1} \ + \ \frac{1}{2} V_{\Xi N}^{^{33}S_1} \\ & \frac{4}{\Xi} \mathrm{H}(0^+, 1): \ \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{^{11}S_0} \ + \ \frac{1}{3} V_{\Xi N}^{^{31}S_0} \ + \ \frac{1}{2} V_{\Xi N}^{^{33}S_1} \\ & \frac{4}{\Xi} \mathrm{H}(1^+, 1): \ \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{^{31}S_0} \ + \ \frac{1}{6} V_{\Xi N}^{^{13}S_1} \ + \ \frac{2}{3} V_{\Xi N}^{^{33}S_1} \\ & \frac{4}{\Xi} \mathrm{H}(0^+, 0): \ \tilde{V}_{\Xi N} \approx \frac{1}{2} V_{\Xi N}^{^{31}S_0} \ + \ \frac{1}{2} V_{\Xi N}^{^{13}S_1} \end{split}$$

• A=5 system:

$${}_{\Xi}^{5}\mathrm{H}(\frac{1}{2}^{+},\frac{1}{2}): \ \tilde{V}_{\Xi N} \approx \frac{1}{16} V_{\Xi N}^{^{11}S_{0}} + \frac{3}{16} V_{\Xi N}^{^{31}S_{0}} + \frac{3}{16} V_{\Xi N}^{^{13}S_{1}} + \frac{9}{16} V_{\Xi N}^{^{33}S_{1}}$$

Summary

study ${}^{4}_{\Lambda}$ H(0⁺,1⁺), ${}^{5}_{\Lambda}$ He hypernuclei using chiral 2B & 3N interactions + SRG-induced YNN

- contribution of SRG-induced YNNN force is negligible
- YN NLO13 & NLO19 potentials predict different results for ${}^{4}_{\Lambda}H(1^{+})$, ${}^{5}_{\Lambda}He$
- → YNN force is needed in order to properly describe light hypernuclei (work in progress)

study CSB in A=7 isotriplet and A=8 doublet

• **CSB1** fits reproduce experimental results for A=4 & 7 systems but lead to a somewhat larger than the experimental CSB for the ${}^8_{\Lambda}$ Be, ${}^8_{\Lambda}$ Li doublet

investigate A=4-7 \equiv hypernuclei using NLO(500) $\equiv N$ potential

• found 3 loosely bound states $(1^+, 0)$, $(0^+, 1)$, $(1^+, 1)$ in $NN\Xi$;

 ${}_{\Xi}^{5}$ H(1/2⁺,1/2), ${}_{\Xi}^{7}$ H(1/2⁺,3/2) are more tightly bound

Thank you for the attention!

	NLO19(500)	NLO13(650)	Exp.	Hiyama [8]
	$(\lambda = 0.837)$	$(\lambda = 0.913)$		
$^{7}_{\Lambda}\mathrm{Be}$	5.44 ± 0.03	5.58 ± 0.03	5.16 ± 0.08	5.21
$^7_{\Lambda}{ m Li}^*$	5.49 ± 0.04	5.65 ± 0.03	5.26 ± 0.03 5.53 ± 0.13	3 5.28
$^{7}_{\Lambda}{ m He}$	5.43 ± 0.06	5.63 ± 0.05	5.55 ± 0.1	5.36

	$^{8}_{\Lambda}\mathrm{Be}$	$^{8}_{\Lambda}$ Li
NLO13(600)		7.04 ± 0.08
NLO13(600)CSB1	7.13 ± 0.05	6.99 ± 0.09
NLO13(600)CSB2	7.56 ± 0.05	7.23 ± 0.04
Exp.	6.84 ± 0.05	6.80 ± 0.03
Hiyama	6.72	6.80

Ξ N phase shifts predicted by modern interactions

- ${}^{11}S_0$ is rather attractive in NLO and HAL QCD, but repulsive in ESC08c
 - ${}^{33}S_1$ is strongly attractive in ESC08c (lead to a ΞN bound state), it is only moderately (weakly) attractive in NLO (HAL QCD)