

<u>Study of An FSI with</u> <u>A quasi-free productions</u> on the ${}^{3}H(e, e'K^{+})X$ reaction at JLab

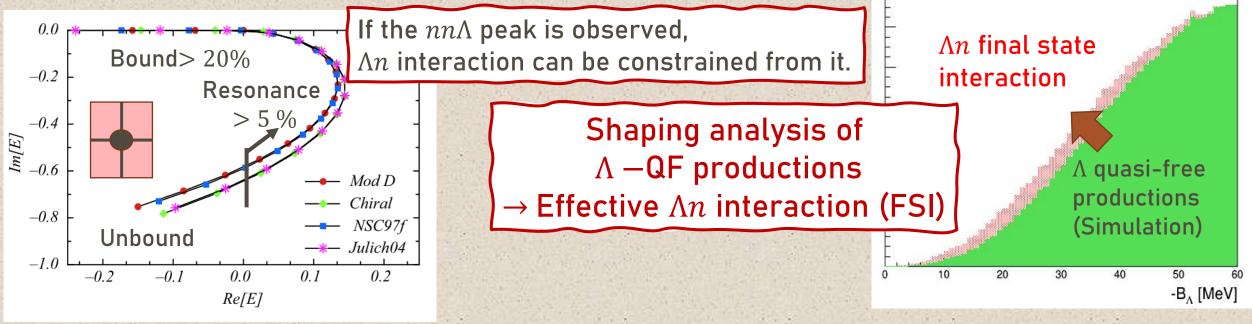
K. Itabashi for the JLab Hypernuclear Collaboration Univ. of Tokyo

June 30, 2022

Contents

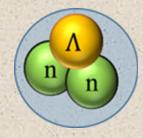
- Introduction
 - Study of the Λn interaction from $nn\Lambda$ system
 - nnA search experiment at Jlab (E12-17-003)
- Analysis results
 - ³H(e, e'K⁺)X missing mass spectrum
 - Λn final state interaction
- Summary

Study of the Λn interaction from the $nn\Lambda$ system


Ann

 $nn\Lambda$ is pure Λ - n system \rightarrow It is good system to study the Λn interaction

The existence of the $nn\Lambda$ is not established ($nn\Lambda$ state puzzle).


- Experimental data(GSI) → Bound state was reported. ^{C. Rappold et al.,} (HypHI Collaboration) Phys. Rev. C 88 041001 (2013)
- Theoretical calculation \rightarrow Unbound or Resonance

Iraj R. Afnan *et al.,* Phys. Rev. C 92, 054608 (2015).

June 30, 2022

Study of the Λn interaction from the $nn\Lambda$ system

nn Λ is pure Λ -*n* system \rightarrow It is good system to study the Λn interaction

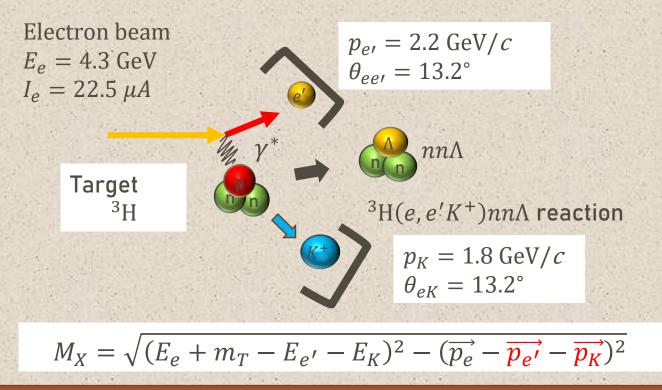
The existence of the $nn\Lambda$ is not established ($nn\Lambda$ state puzzle).

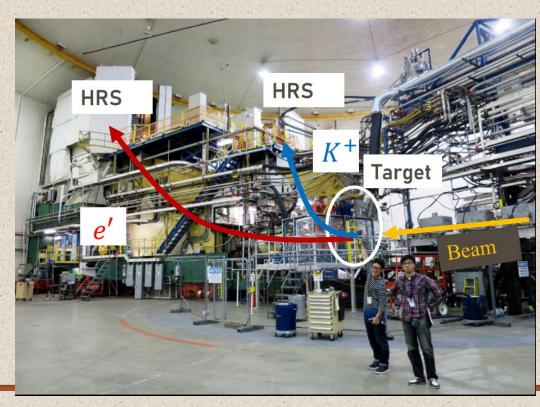
- Experimental data(GSI) \rightarrow Bound state was reported.
- Theoretical calculation \rightarrow Unbound or Resonance

Iraj R. Afnan et al., Phys. Rev. C 92, 054608 (2015). If the $nn\Lambda$ peak is observed, Λn final state 0.0 Λn interaction can be constrained from it. **interaction** Bound> 20% -0.2Res We performed the $nn\Lambda$ experiment at -0.4Im[E]JLab (2018). Λ quasi-free -0.6 productions L. Tang (Mon-II) and B. Pandey (Web-IVb) (Simulation) -0.8Unbound talked about $nn\Lambda$ experiment. 50 40 60 -1.0-B_A [MeV] -0.2-0.1Re[E]

HYP2022

June 30, 2022


C. Rappold et al., (HypHI Collaboration) Phys.


Rev. C 88 041001 (2013)

nnA experiment at Jefferson Lab (E12-17-003)

The $nn\Lambda$ search experiment (E12-17-003) was performed at JLab Hall A (2018).

- Tritium gas target (84.8 mg/cm²)
- Two high resolution spectrometers (HRSs) $(\Delta p/p \sim 2.0 \times 10^{-4})$

HYP2022

June 30, 2022

Contents

- Introduction
 - Study of the Λn interaction from $nn\Lambda$ system
 - nnA search experiment at Jlab (E12-17-003)

June 30, 2022

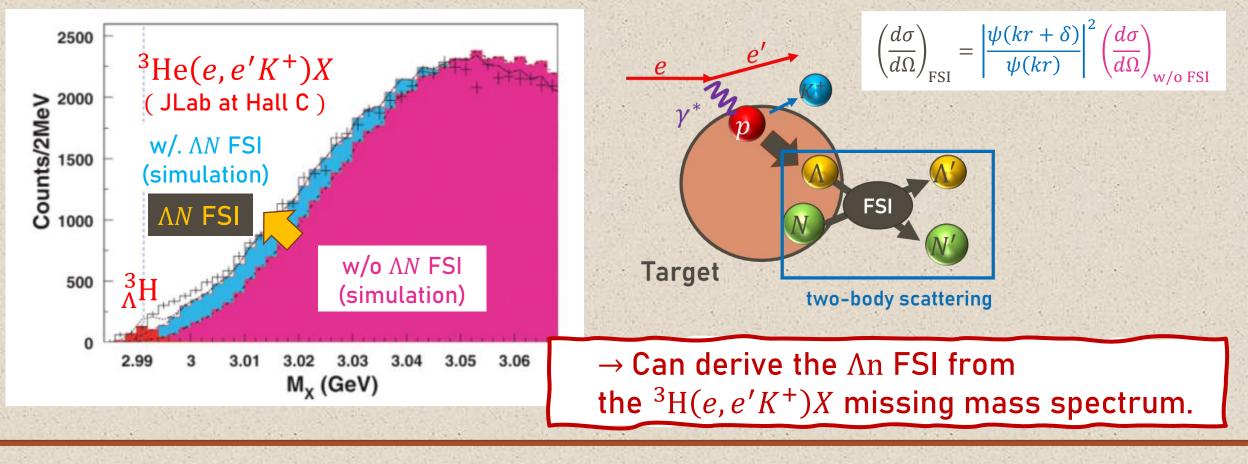
- Analysis results
 - ³H(e, e'K⁺)X missing mass spectrum
 - Λn final state interaction
- Summary

³H(e, e'K⁺)X missing mass spectrum

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction

 $nn\Lambda$ mass threshold $B_{\Lambda} \sim 0 \text{ MeV}$: $nn\Lambda$ resonance?? do/dΩ_K [(nb/sr) / 2MeV] 30 Exp. data Upper limit study of $nn\Lambda$ (Published) K.N. Suzuki et al., PTEP 2022, 013D01 MC (w/o. FSI) Not enough $\begin{array}{c} 14 \\ \oplus \\ 12 \end{array} (-B_{\Lambda}, \Gamma) = (0.25, 0.8) \text{ MeV} \\ \text{(Breit-Wigner*Response)} \end{array}$ 20 (MeV) 9 significance lo/dΩ (nb/sr/2 Belyaev 10 Schäfer 2 3 4 -2 -1 0 $-B_{\Lambda}$ (MeV) $10 < -B_{\Lambda} < 60 \text{ MeV}$ Due to Λn final state interaction (Λn FSI) 50 100 150 $nn\Lambda??$ $-B_{\Lambda}$ [MeV]

*1 : JLab Hall A/C standard Monte Carlo Simulation


Including fermi momentum, kaon decay,

June 30, 2022

radiative correlations

Final State Interaction (FSI)

Final state interaction (FSI) is reaction between a recoil Λ and a nucleon within a target (two-body (ΛN) scattering).

HYP2022

June 30, 2022

8

Calculation of the An final state interaction

 $\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left|\frac{\psi(kr+\delta)}{\psi(kr)}\right|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o|FSI} = I(k_{rel}) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o|FSI} = \frac{1}{|J_l(k_{rel})|^2} \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o|FSI}$

FSI can be written with influence factor $I(k_{rel})$ as following

 $\begin{array}{c}
\gamma^{*} & \gamma^{*} + p \rightarrow Y'' + K^{+} & K^{+} \\
\gamma^{*} & \gamma^{*} + p \rightarrow Y'' + K^{+} & Y'' + n_{1} \rightarrow Y' + n_{1}' \\
(FSI) & Y'' & (FSI) \\
\gamma'' & \gamma' & \gamma' \\
\gamma'' & \gamma'' & \gamma' \\
\gamma'' & \gamma'' & \gamma'' \\
\gamma'' & \gamma'' & \gamma'' \\
\gamma''$

In the ERA ($k \cot \delta = -1/a + 1/2r_ek^2$), the Jost function is written with scattering length (a) and effective range (r_e) as :

$$J_{l=0}(k_{rel}) = \frac{k_{rel} - i\beta}{k_{rel} - i\alpha}$$
$$\frac{1}{2}r_e(\alpha - \beta) = 1, \ \frac{1}{2}r_e\alpha\beta = -\frac{1}{\alpha}$$

HYP2022

June 30, 2022

9

Missing mass spectrum including An FSI by SIMC

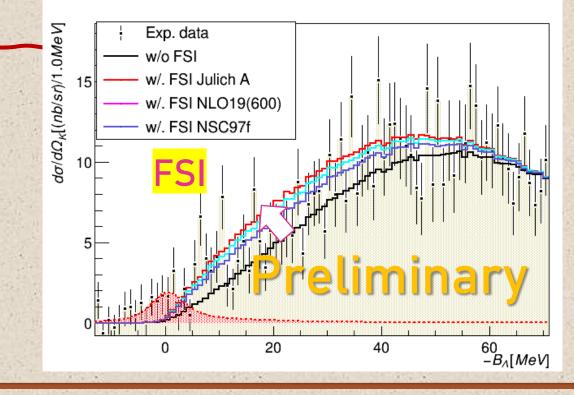
Missing mass with An FSI is written as $\left(\frac{d\sigma}{d\Omega}\right)_{FSI} = I(k_{rel}) \left(\frac{d\sigma}{d\Omega}\right)_{W/0 FSI}$ • $\left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI}$: Given by SIMC (w/o FSI) • $I(k_{rel})$: Calculated with Jost function Red : w/FSI (NSC97f) Green : w/o FSI (SIMC) nfluence factor $(0.25^{1}S_{0} + 0.75^{3}S_{1})$ w/. FSI Julich A w/. FSI Julich B w/. FSI NLO13(600) Successfully reproduced w/. FSI NLO13(650) the enhancement w/. FSI NLO19(600) w/. FSI NLO19(650) Calculating w/, FSI NSC97f $\vec{p}_{\Lambda n}$ and $I(\vec{p}_{\Lambda n})$ $I(p_{\Lambda n}) = \frac{I_s + 3I_t}{\cdot}$ 3 H(e, e'K⁺)X (Simulation) each event 20 50 0 10 30 40 60 450 50 P_{An} [MeV/c] 150 200 250 300 400 -B_A [MeV]

June 30, 2022

10

χ^2 fiiting with missing mass spectrum

Experimental data (${}^{3}H(e, e'K^{+})X$ missing mass spectrum)


- Excess events around $nn\Lambda$ mass threshold $(-B_{\Lambda} \sim 0 \text{ MeV})$
 - \rightarrow Assuming resonance state of $nn\Lambda$ (Γ , $-B_{\Lambda}$) = (4.7,0.55) MeV V.B. Belyaev et al., Nucl. Phys. A, 803 (2008).
- Including Λn FSI effects ($0 < -B_{\Lambda} < 60$ MeV)

$$\chi^{2} = \sum_{i} \frac{\left(y_{\text{data}}^{i} - w_{FSI} \cdot y_{FSI}^{i} - w_{nn\Lambda} \cdot y_{nn\Lambda}^{i}\right)}{\sigma_{\text{data}}^{i}}$$

$$(w_{FSI}, w_{nn\Lambda} \text{ are scaling factors})$$

Missing mass spectra with FSI :

- Succeeded in reproducing enhancement structure ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)
- Better agreement with the experimental data

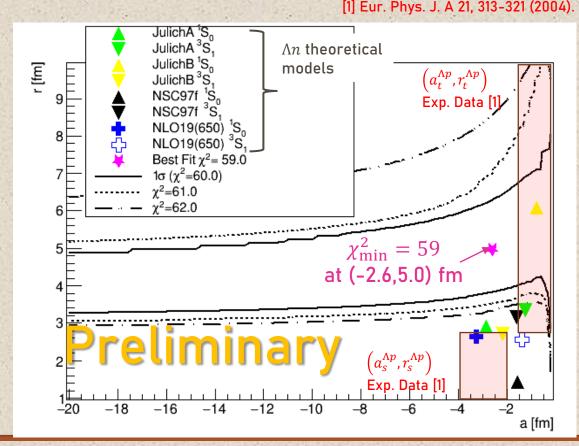
June 30, 2022

Search for the best An potential parameters

 Λn FSI : calculated by Jost function with the (a, r) potential parameters

 \rightarrow Study of the (a, r)-dependence of χ^2 (Search for the best (a, r) parameters)

Using two parameters (\bar{a}, \bar{r}) : $\bar{a} \equiv a_s = a_t$, $\bar{r} \equiv r_s = r_t$


$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left(\left|\frac{1}{J(k_{\rm rel})}\right|^2\right) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o \ FSI}$$

Minimum chi-square χ^2_{\min} is 59 at $(\bar{a}, \bar{r}) = (-2.6, 5.0)$ fm. Black solid line is the contour line at $\chi^2_{\min} + 1$.

 \rightarrow It indicates statistical err.

HYP2022

Assuming $\bar{a} = -2.6$ fm 3.8 < \bar{r} < 6.3 fm (Preliminary)

June 30, 2022

- AN final state interaction can be studied by the shaping analysis of the $\Lambda-\rm QF$ distribution.
- An FSI was investigated from the Λ –QF productions in the ${}^{3}\text{H}(e, e'K^{+})X$ reaction.
- Using the Jost function, scattering length and effective range (a, r) were successfully restricted by the chi-square fitting.
- For $\bar{a} = -2.6$ fm, $3.8 < \bar{r} < 6.3$ fm (Preliminary)

June 30, 2022

Estimation for the relative An momentum

Λ momentum calculation

 $\vec{p}_{\Lambda} = \vec{p}_p + \vec{p}_{\gamma^*} - \vec{p}_K$

Neutron momentum calculation

Stopped tritium target $\rightarrow \vec{p}_p + \vec{p}_{n1} + \vec{p}_{n2} = 0$

Relative momentum was defined as $\vec{p}_{rel} = \frac{M_n \vec{p}_{n1} - M_n \vec{p}_{n2}}{2M_n}$ $\vec{p}_{n1(n2)} = -\frac{1}{2} \vec{p}_p + \vec{p}_{rel}$

• Proton momentum (p_p) : Fermi momentum distribution

Ref.) R. B. Wiringa Phys. Rev. C 43, 1585 (1991).

15

- Angle between \vec{p}_p and \vec{p}_{rel} (heta) : Assuming spherical uniform distribution
- Relative momentum (\vec{p}_{rel}) : Given by an excited energy of nn system (E_{nn}^*)

 E_{nn}^* was estimated by spectral function of ${}^{3}\mathrm{H}$ Ref.) C. Ciofi degli Atti et al., Phys. Rev. C, 21 (1980).

June 30, 2022

HYP2022

 $P_p(\vec{p}_p, E_p)$

p

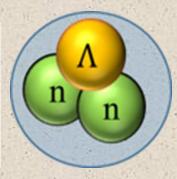
 $P_{nn}(-\vec{p}_p, E_{nn}^*)$

Experimental approach for the AN interaction

The ΛN interaction have been understood with the data for ΛN scattering and the Λ hypernuclear spectroscopy.

Scattering experiment

 Major experimental method for deducing the B-B interactions.


Λ hypernuclear spectroscopy

- By Comparing with theoretical models
- \rightarrow Understanding the effective ΛN interaction

June 30, 2022

 Λp scattering \rightarrow Limited data Λn scattering \rightarrow No data (Not realistic)

 $nn\Lambda$ is pure $\Lambda - n$ system \rightarrow It is good system to study the Λn interaction.

16