
Analysis of Energy Uncertainties Generated from Density of Emulsion Layer and **Range Straggling**

Phyo Myat Lin¹, A. Kasagi^{1,4}, K. Nakazawa^{1,2}, N. Nishimura², Aung Nay Lin Nyaw^{2,} J. Yoshida³, M. Yoshimoto⁵

¹Graduate School of Engineering, Gifu Univ., ²Graduate School of Education, Gifu Univ., ³Tohoku Univ., ⁴Hight Energy Nuclear Physics Laboratory, RIKEN, ⁵RIKEN Nishina Center for Accelerator-Based Science, RIKEN

Introduction

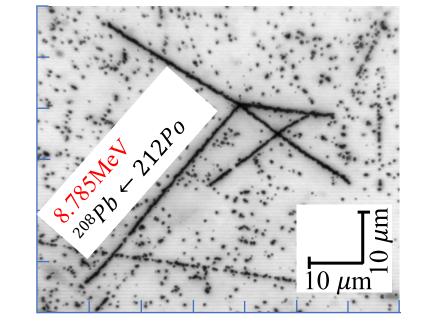
2. Calibration of density of emulsion layer

- \succ To determined sufficient alpha tracks, density (d) and density error (d_{err}) were calibrated using six different number of alpha track groups (G-10, G-50, G-100, G-150, G-200, and G-250).
- > The d for all groups vary from 3.57 to 3.64 g/cm³. Average d for each group is closed to 3.6 g/cm³ (approximate density, $d_0 \cong 3.6$ g/cm³).

3. Kinetic energy (*KE*) and its error (KE_{err})

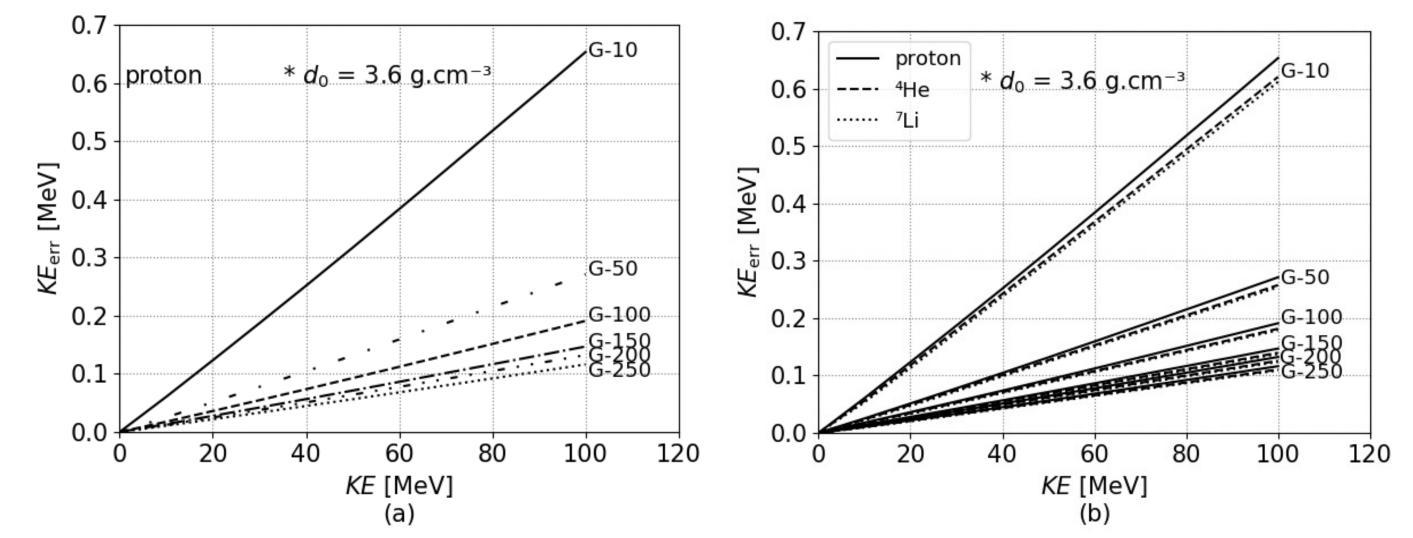
Motivation

One module (13 Emulsion Sheets) ≻To detect more double hypernuclei. ≻Currently, 33 events were detected.


Mass reconstruction for double hypernuclei

 Λ - Λ interaction energy $\longrightarrow \Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} - 2B_{\Lambda}$

 \blacktriangleright In the case of NAGARA event,


$$B_{\Lambda\Lambda} \begin{pmatrix} {}^{6}_{\Lambda\Lambda}He \end{pmatrix} = M({}^{4}_{.}He) + 2M(\Lambda) - M({}^{6}_{\Lambda\Lambda}He)$$
$$M({}^{6}_{\Lambda\Lambda}He) = M({}^{5}_{.}He) + M(p) + M(\pi^{-})$$
$$+KE({}^{5}_{.}He) + KE(p) + KE(\pi^{-})$$
$$Range-Energy relation$$
Range of $({}^{5}_{.}He)$ (p) (π^{-})

 \triangleright Range-Energy relation in nuclear emulsion,

NAGARA Event

- \succ The sufficient alpha tracks will be determined using KE_{err} generated from $d_{\rm err}$
- ➤ To calculate KEerr from d_{err} , $d_0 \cong 3.6$ g/cm³ and average d_{err} ($d_{err avg}$) of same number of alpha track group were used.
- \succ KE was varied from 0 to 100 MeV with intervals of 10 MeV.
- \succ The following figures shows relation between KE and KE_{err} for proton, ⁴He, and ⁷Li.

(a) Relation between KE and KE_{err} for proton and (b) Comparison result for proton, ⁴He, and ⁷Li.

- \succ The gaps of KE_{err} in the groups between G-10 and G-150 is large in comparison to between G-150 and G-250.
- > Tendencies of KE_{err} gap for ⁴He and ⁷Li are similar to those for the proton.

 $\frac{R}{7^2} = \frac{M}{7^2} \cdot \lambda(\beta, d) + MZ^{2/3}C_z(\beta/Z)$

 \succ It is very important to measure density of emulsion layer at beam exposure time because of shrunk emulsion layer after photographic development.

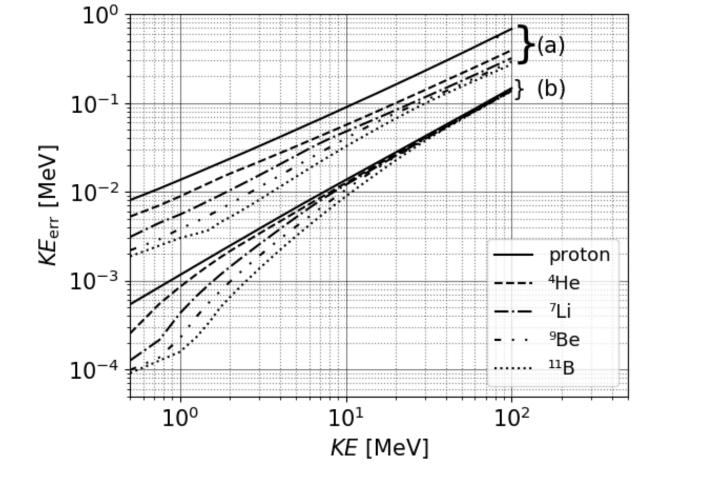
Superimpose image of alpha tracks from thorium series

> Alpha track from ^{212}Po of Thorium series which have monochromatic energy were used to calibrate shrinkage factor (S) and emulsion density. \succ The relation between the number of alpha tracks and the error of mass reconstruction have not been sufficiently studied.

Objective

 \succ The purpose of this research is to determine sufficient number of alpha tracks for the calibration of density of emulsion layer in order to minimize mass error of double hypernuclei.

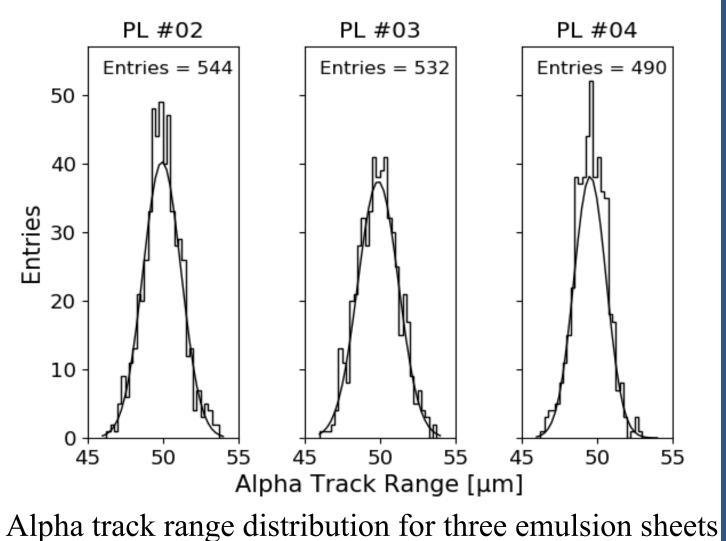
Analysis method and results


1. Alpha track range measurement

- \triangleright Since we used $d_0 = 3.6$ g/cm³, we check KE_{err} variation by changing \pm 0.10 to d_0 . The result gives a difference of ± 2.35 % (0.004MeV) of KE_{err} at 100 MeV. It was sufficiently small to be ignored
- > Therefore, sufficient number of alpha tracks was determined to be at least 150.

4. KE_{err} from d_{err} and range straggling (ΔR)

 \triangleright As ΔR is a statistical error in the analysis of double hypernuclei, the KE_{err} obtained from ΔR was also calculated using following equation.


$$\Delta R (KE) = \frac{\sqrt{M}}{Z^2} \cdot \Delta R_p \left(\frac{KE}{M}\right)$$

> The range of alpha tracks were calculated using 3D coordinate with the following formula,

 $R = \sqrt{\Delta X^2 + \Delta Y^2 + (\Delta Z * S)^2}$

- where S is shrinkage factor in z-direction and it can be obtained using minimum standard deviation (*Min_Stdev*) of alpha track range
- > Alpha track from three emulsion 50 sheets (PL02, PL03, PL04) of module #30 of J-PARC E07 experiment were 40 used for the calibration. trië 30 > Consistency of alpha track range was 20 also check by chi-square test. 10 - \succ The result show that alpha tack range
- in each emulsion sheet are consistent under normal distribution.

Comparison of KE_{err} value for each KE obtained from (a) ΔR and (b) $d_{err avg}$ for proton, ⁴He, ⁷Li, ⁹Be, and ¹¹B.

 $\succ KE_{err}$ from ΔR is one order of magnitude larger than that from d_{err} avg for five particles, namely, the proton, ⁴He, ⁷Li, ⁹Be, and ¹¹B.

5. Summary

- > Suitable number of alpha tracks for density calibration was decided to be at least 150.
- > Variation of d_0 with ± 0.10 g/cm3 generated a difference of ± 2.35 % of KE_{err} at 100 MeV. It is small enough to be ignored.
- KE_{err} from ΔR is one order of magnitude larger than that from $d_{err avg}$. This study aimed to provide for the analysis scheme of double hypernuclei in the future to minimize mass error.