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Kaonic nuclei
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A. Doté et al. / Physics Letters B 590 (2004) 51–56 53

Table 1
Summary of the present calculations. B.E.: total binding energy. ρ(0): nucleon density at the center of the system. Rrms: root-mean-square
radius of the nucleon system. ν: width parameter of a Gaussian wave packet used in the calculation. β: deformation parameter for the nucleon
system. ppnK−† and 8BeK−†: AY’s results

B.E. [MeV] ΓK [MeV] ρ(0) [fm−3] Rrms [fm] ν [fm−2] β

3He 7.65 – 0.15 1.54 0.22 0.02
ppnK− 113 24 1.39 0.72 1.12 0.19
ppnK−† 116 20 1.10 0.97

8Be 46.7 – 0.13 2.38 0.21 0.60
8BeK− 159 43 0.76 1.42 0.52 0.55
8BeK−† 168 38 ∼ 0.85

Fig. 1. Calculated density contours of ppnK−. Comparison between (a) usual 3He and (b) 3HeK− is shown in the size of 5 by 5 fm. Individual
contributions of (c) proton, (d) neutron and (e) K− are given in the size of 3 by 3 fm.

24 MeV. The present result is very similar to the AY
prediction: BK = 108 MeV and ΓK = 20 MeV. We
have not considered the decay width from the non-
mesonic decay (K̄NN → ΛN/ΣN ), but according
to AY it is estimated to be about 12 MeV [1]. The
width of ppnK− remains still narrower than that of
Λ(1405), even when the non-mesonic decay is taken
into account.
Surprisingly, the central density (“uncorrelated den-

sity”) of the system amounts to 8.2-times the normal
density due to the shrinkage effect. Fig. 1(a) and (b)
shows a comparison between 3He and 3HeK−. In or-

der to see how the bound K̄ changes the nucleus in
more detail we show the calculated density distribu-
tions of the constituents in Fig. 1(c)–(e). Apparently,
the proton distribution is more compact than the neu-
tron distribution. This phenomenon is attributed to
the property of the K̄N interaction. Table 2 shows
how protons and a neutron in ppnK− contribute to
the kinetic energy and the expectation value of the
K̄N interaction, and also to each root-mean-square
radius. This table together with Fig. 1 can be inter-
preted as follows. Since the K−p interaction is much
stronger than theK−n one, the protons distribute com-

1.Y. Akaishi and T. Yamazaki. Phys. Rev. C 65, 044005 (2002).
2.T. Yamazaki and Y. Akaishi. Physics Letters B 535, 70–76 (2002).
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dense nuclei are predicted

Kaon mass changes  
in nuclear medium?

ppn ppnK
predicted from 
attractive KbarN interaction in I=0

Anti-Kaon could be a unique probe for hadron/nuclear physics



• Exclusive measurement of all the final state particles in a wide q region 
• Most convincing data after a history of 20-year search 
• Next step →  search to investigate the A-dependence of kaonic nucleiK̄NNN

“ ” in J-PARC E15K̄NN
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PLB789(2019)620., PRC102(2020)044002.

Details in T. Yamaga’s talk 
on Thursday morning
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: Theoretical situaionK̄NNN
4

Binding 
Energy

Width 
(mesonic-only)

AY: PRC65(2002)044005, PLB535(2002)70. 
WG: PRC79(2009)014001. 
BGL: PLB712(2012)132. 
OHHMH: PRC95(2017)065202.

Larger binding than  and similar width are predicted.K̄NN

I(Jp) = 0(
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−
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• Some experimental searches in 2000s. No conclusive result. 
• multi-N absorptions hide bound-state signals in Stop-K

: Experimental situaionK̄NNN
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BRIEF REPORTS PHYSICAL REVIEW C 76, 068202 (2007)

peak position of the pπ invariant mass (Mpπ ) agrees with the
known " mass, and the width of the " peak is as narrow as
10 MeV/c2 FWHM, which is fully consistent with the observed
1/β resolution on each detector arm. By the measurement, the
angular region of −1 ! cos θ"d ! −0.6 was covered, where
θ"d is the opening angle between " and d three-momenta
in the laboratory frame, and thus observed "d pairs are
back-to-back correlated. Because of the limited acceptance
of their momenta, only energetic d and " were detected.
Therefore, they are considered to be mainly produced in
nonmesonic final states,

(K−4He)atomic → " + d + n, (6)

→ %0("γ ) + d + n. (7)

The "dn and %0dn final states are separated from possible
contaminants, such as "/%0πdN , by reconstructing the
missing mass

MN∗ =
√

(pinit − p" − pd )2, (8)

where pinit, p", and pd are four-momenta of the initial
state K− + 4He at rest and the measured ones of " and d,
respectively. The distribution of the thus determined missing
mass MN∗ is shown in Fig. 2(b). The narrow peak structure at
∼940 MeV/c2 is due to a "dn final state, whereas a %0("γ )dn
final state causes the broad distribution peaked at
∼1020 MeV/c2. As expected, no event exists above mπ +
mN ≈ 1080 MeV/c2, where "πdN and %0πdN final states
should appear. Therefore, we selected the "dn final state by
the condition 920 ! MN∗ ! 960 (MeV/c2).

The correlation between the "d invariant mass (M"d )
and the total three-momentum (P"d ) from all "d events is
shown in Fig. 3, where its projections onto the horizontal
and vertical axes classified by the "dn and %0dn final
states are shown together. A simulated shape, evaluated by
uniformly generated "dn events in the three-body phase
space, taking the realistic experimental setup into account,
is overlaid on the M"d spectrum, normalized to the observed
number of "dn events. The M"d spectrum of "dn events,
which clearly deviates from the simulated one, consists of two
components. One is an asymmetric peak located just below
the m4He + mK− − mn mass threshold at 3282 MeV/c2, and
the other is a broad component from 3100 to ∼3220 MeV/c2.
The M"d resolution near the threshold, estimated from the
observed MN∗ distribution, is ∼8 MeV/c2 rms, which is
significantly smaller than the observed width of the peak
structure. Identifying P"d as the momentum of missing
neutron, the high-mass peak is correlated with neutrons in
the momentum range <∼250 MeV/c. Thus, we can interpret
this peak as the "d branch of the 3NA process,

K−“ppn”(n) → "d(n), (9)

where the missing n is a spectator of the reaction, inheriting its
original Fermi momentum distribution from 4He. The deuteron
in the final state could be either from an original d cluster in
4He participating in the reaction (“ppn” is actually “pd”, then)
or a product of coalescence after the absorption. The nature
of the broad lower mass component accompanying neutrons
with momenta higher than ∼250 MeV/c is very interesting but
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FIG. 3. A correlation diagram between the M"d and P"d , with
kinematical constraints for MN∗ = 920, 940, and 960 MeV/c2 over-
laid. On the projections, contributions of the "dn and %0dn events
are represented by black and gray lines, respectively. The phase-
space distribution is represented by a thin gray curve on the M"d

spectrum.

still unclear at this moment, and several explanations may be
possible.

The correlation between the momenta of the " and d of
the "dn events is shown in Fig. 4. Well-correlated high-
momentum "d pairs constitute the 3NA component at the
region of cos θ"d < −0.9, in which the momenta of d and "
widely distribute along kinematically allowed curves for given
M"d values, reflecting the original Fermi motion. However,
the lower invariant mass component is composed of relatively
slow-" and fast-d pairs, significantly different from the 3NA
component. A presumable interpretation of the observed lower
mass distribution with conventional processes might be a
sequence of a %n branch of 2NA process and successive %"
conversion,

K−“NN”(NN ) → %n(NN ), %(NN ) → "d. (10)

There are other possible candidates for conventional explana-
tions with two-step reaction mechanisms. One possible exotic
interpretation of the lower mass component is to assume the
3S+

T =0 production and its decay to "d. Another possibility
is the 2S0

T =1/2 production and its decay to "n. For both,
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Our approach
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+ +
reaction

K- 3He “K-pp” (n)

pΛ

+ +
reaction

K- 4He “K-ppn” (n)

dΛ

J-PARC E15

This talk

add one neutron

Use in-flight (K-,n) reaction, just as J-PARC E15



• The same cylindrical detector system 
+ forward calorimeter in T77 for lifetime measurements of hypernuclei 

J-PARC E15 vs T77 @ K1.8BR
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J-PARC E15@2015 
42G K- on 3He

J-PARC T77@2020 
6G K- on 4He

calorimeter

Y. Ma’s talk (Mon), T. Akaishi’s poster

only 3 days!

We already have small dataset with 4He target

K−(4He, π0)4
ΛH
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• Λdn final states are identified with a good purity 
by considering kinematical & topological consistensies 
• ~20% contamination from Σ0dn/Σ-dp

Λdn event selection 
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w/ vertex consistency cut 
w/ pipd missing mass cut 

final sample

Λ reconstruction
w/ vertex consistency cut 
w/ lambda mass cut 

final sample

Missing neutron ID
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• Two disributions are quite similar 
• structure below the threshold, QF-K-, and broad background

Preliminary result
9

622 S. Ajimura et al. / Physics Letters B 789 (2019) 620–625

Fig. 1. a) 2D event distribution plot on the M (= IM!p ) and the momentum transfer q (q!p ) for the !pn final state. The M F (q) given in Eq. (2), the mass threshold M(Kpp), 
and the kinematical boundary for !pn final state, are plotted in the figure. The lower q boundary corresponds to θn = 0 (forward n), and the upper boundary corresponds to 
θn = π (backward n). The histograms of projection onto the M axis b), and onto q axis c) are also given together with the decompositions of the fit result.

tation. On the other hand, the distribution centroid of M above 
M(Kpp) depends on q, and the yield vanishes rapidly as a function 
of q. The centroid shifts to the heavier M side for the larger q, sug-
gesting its non-resonant feature, i.e. the propagator’s kinetic energy 
is converted to the relative kinetic energy between ! and p, near 
the lower q boundary. Thus, the most natural interpretation would 
be non-resonant absorption of quasi-free ‘K ’ by the ‘N N ’ spectator 
(QFKA) due to the final state interaction (FSI). This process can be 
understood as a part of the quasi-free K reaction, in which most 
K s escape from the nucleus, as we published in [21]. Note that 
there is another change in event distributions at M(Kpp), i.e., the 
event density is low close to the θn = 0 line below M(Kpp), while 
it is high above M(Kpp) (this point will be separately discussed in 
the last section).

This spectral substructure is in relatively good agreement with 
that of Sekihara–Oset–Ramos’s spectroscopic function [23] to ac-
count for the observed structure in [22]. Actually, their spectrum 
has two structures, namely A) a “K −pp” pole below the mass 
threshold M(Kpp) (meson bound state), and B) a QFKA process 
above the M(Kpp). Thus, the interpretation of the internal sub-
structures near M(Kpp) is consistent with their theoretical picture.

3. Fitting procedure

We first describe what we can expect if point-like reactions 
happen between an incoming K − and 3He, which goes to a !pn
final state. The events must distribute simply according to the !pn
Lorentz-invariant phase space ρ3(M, q), as shown in Fig. 2a. We 
fully simulated these events based on our experimental setup and 
analyzed the simulated events by the common analyzer applied 
to the experimental data. The result is shown in Fig. 2b, which 
is simply E(M, q) × ρ3(M, q), where E(M, q) is the experimen-
tal efficiency. One can evaluate E(M, q) by dividing Fig. 2b by 
Fig. 2a bin-by-bin, which is given in Fig. 2c. As shown in Fig. 2c, 
we have sufficient and smooth experimental efficiency at the re-
gion of interest, M ≈ M(Kpp) at lower q, based on the careful 
design of the experimental setup. On the other hand, the efficiency 

is rather low at the dark blue region and even less toward the 
kinematical boundary, as shown in Fig. 2c. If we simply apply the 
acceptance correction, the statistical errors of those bins become 
huge and very asymmetric. This fact makes the acceptance correc-
tion of the entire (M, q) region unrealistic. Therefore, we applied 
a reverse procedure, i.e., we prepared smooth functions f{ j}(M, q)

(to account for the j-th physical process) and multiplied that with 
E(M, q) × ρ3(M, q) (= Fig. 2b) bin-by-bin. In this manner, one 
can reliably estimate how the physics process should be observed 
in our experimental setup, and this permitted us to calculate the 
mean-event-number expected in each 2D bin. The three introduced 
model functions (at the best fit parameter set) are shown in Fig. 3.

A very important and striking structure exists below M(Kpp), 
which could be assigned as the “K − pp” signal. To make the fitting 
function as simple as possible, let us examine the event distri-
bution by using the same function as was applied in [22], i.e., a 
product of B.W. depending only on M , and an S-wave harmonic-
oscillator form-factor depending only on q as:

f{Kpp} = CKpp
(
%Kpp/2

)2

(
M − MKpp

)2 +
(
%Kpp/2

)2 exp

(

−
(

q
Q Kpp

)2
)

, (1)

where MKpp and %Kpp are the B.W. pole position and the width, 
Q Kpp is the reaction form-factor parameter, and CKpp is the nor-
malization constant, as shown in Fig. 3a.

A model-function of the QFKA channel, f{Q F KA} (M, q), is intro-
duced as follows. As described, we assume that a ‘K ’ propagates 
between the two successive reactions. It consists of 1) K −N →
‘K ’N and 2) non-resonant ‘K ’ + ‘N N ’ → ! + p in the FSI. When the 
‘K ’ propagates at momentum q as an on-shell particle in the spec-
tator’s rest frame (≡ laboratory-frame), then the resulting invariant 
mass M (≡ I M!p(‘K + N N ’)) can be given as:

M F (q) =
√

4m2
N + m2

K + 4mN

√
m2

K + q2, (2)

E15: Λp T77: ΛdPLB789(2019)620

before acceptance correction

M(Kpp) M(Kppn)

preliminary



Preliminary result
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BK̄NNN = xx ± 11(stat) MeV
ΓK̄NNN ∼ 100 MeV
σK̄NNN→Λd ∼ 4 μb

cf . BK̄NN = 42 ± 3 (stat) +3
−4 (syst) MeV@E15 PRC

preliminary

preliminary



• The binding energy of the “ ” system seems to be larger than 
“ ”, although we expect a large systematic error 10~20 MeV. 

• The isospin of the observed state is uniquely assinged as  
from the its decay to ,  
JP=1/2-  assuming all the consistuents are in S-wave 

•  possibility still remains 

•  spin asymmetry against production-plane would be observed, 
because  would produced polirized and conserve its spin in decay. 

• Present data is not enough to judge the decay assymetry

K̄NNN

K̄NN

I = 0
Λ(I = 0) d(I = 0)

Σ*NN (I = 0, Jp = 3/2+)

Λ
Σ*
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We would like to obtain more data with 4He target 

cf . BK̄NN = 42 ± 3 (stat) +3
−4 (syst) MeVBK̄NNN = xx ± 11(stat) MeV

K̄NNN (I = 0, Jp = 1/2−)



• We have just started a construction to complete by the end of JFY2025 
• We wish to perform first physics experiment in JFY2026 with 4He target 
→ Establish  with a larger & higher quality data including  decay K̄NNN K̄NNN → Λpn

Future prospects
12

~4 m

- Super-conducting solenoid  
- x3 longer CDC: solid angle 59%→93% 
- 3-layer barrel NC: neutron efficiency 3%→15% 

new CDS

E15 CDS



• We observed 4He(K-,Λd)n events as a by-product of J-PARC T77: 
(Lifetime measurement of hypernuclei. →Y. Ma’s talk, T. Akaishi’s poster) 

• The observed distribution is similar to that of Λp in E15,  
and would include signals of . 
→ First A-dependence data of Kaonic nuclei. 

• We are constructing new large solenoid spectrometer for further study 
of  (J-PARC E80) and other kaonic nuclei → T. Yamaga’s talk 

• ~4π acceptance & enhanced neutron detection capability 
• Start experiments ~JFY2026 

• We are also seeking the way to take more data with the present CDS in 
near future (J-PARC P92)

K̄NNN

K̄NNN

Summary & Outlook
13



J-PARC E73/T77 collaboration
14

Thank you for your attention!


