
Results of analysis of Σ +p scattering events in J-PARC E40 experiment: differential cross sections and phase shifts of ${}^{3}S_{1}$ and ${}^{1}P_{1}$ states

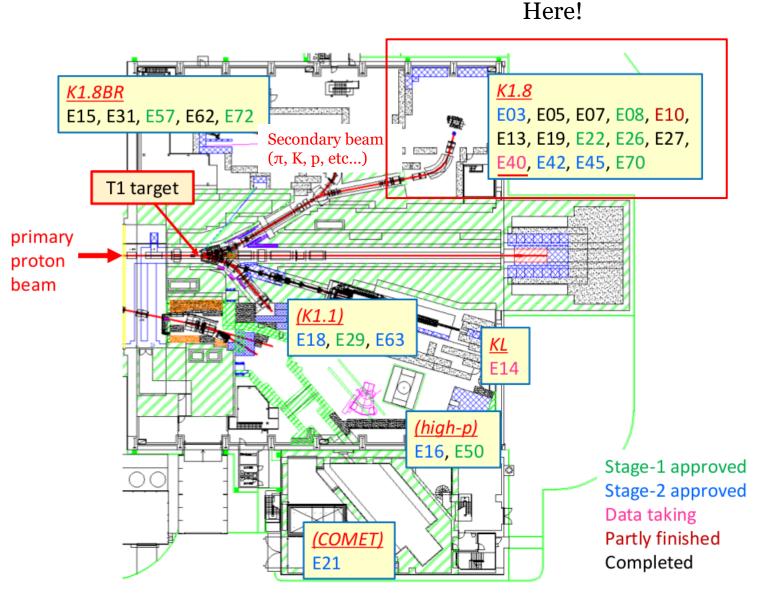
T. Nanamura for the J-PARC E40 collaboration Kyoto University and JAEA

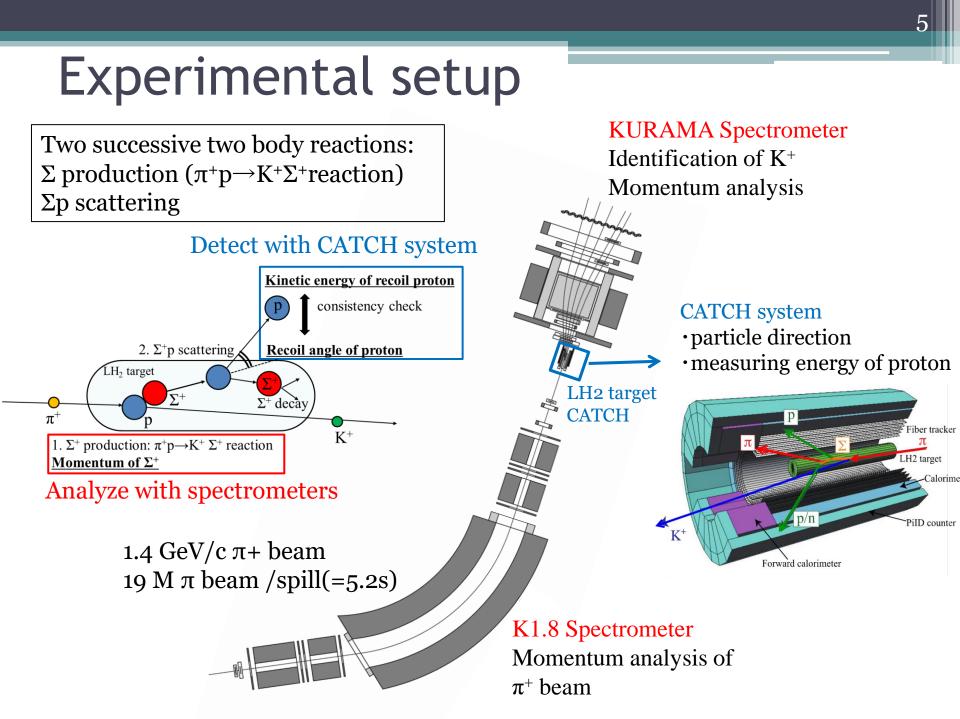
HYP 2022 Contents of this presentation are based on arXiv: 2203.08393

J-PARC E40 experiment Measurement of $d\sigma/d\Omega$ of Σp scatterings

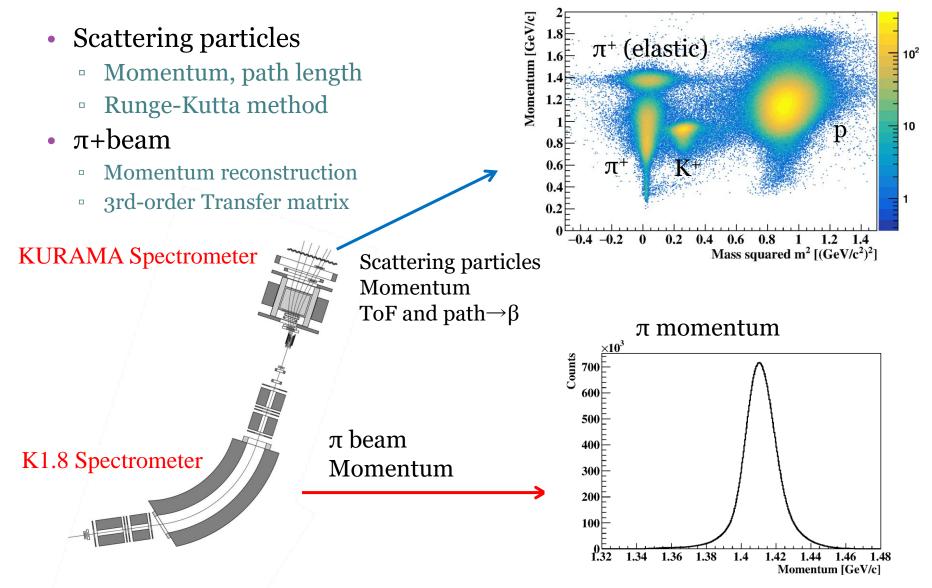
- Physics motivations
 - Verification of repulsive force due to quark Pauli effect in the Σ^+ p channel
 - Systematic study of the ΣN interaction

- Purposes of experiments
 - Measurement of $d\sigma/d\Omega$ with high statistics
- Σ⁺p channel is the best channel to investigate 10-plet!
- Σ -p elastic K. Miwa PRC (2021), Σ -p \rightarrow Λ n inelastic scattering K. Miwa PRL (2022) (Σ data)
- Σ +p elastic scattering (Σ + data)
- Establishment of method to measure π -p \rightarrow K $^{o}\Lambda$ reaction \rightarrow T. Sakao (Thu-III a)
- Data taking was finished June 2020.

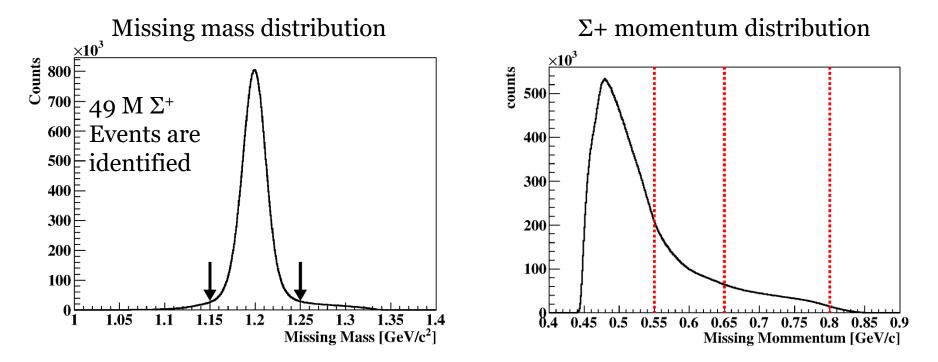

I=3/2, ³Even and ¹Odd: 10-plet of SU(3)_f B-B interaction ${}^{3}S_{1}$:Almost Pauli forbidden \rightarrow strong repulsive force?


BB channel $\left(I\right)$	¹ Even or ³ Odd	3 Even or 1 Odd
NN(I = 0)	-	(10*)
NN(I = 1)	(27)	-
$\Lambda N(I=\frac{1}{2})$	$\frac{1}{\sqrt{10}}[(8_s) + 3(27)]$	$rac{1}{\sqrt{2}}[-(8_{a})+(\mathbf{10^{*}})]$
	$\frac{1}{\sqrt{10}}[3(\mathbf{8_s}) - (27)]$	$\frac{1}{\sqrt{2}}[(8_{a}) + (10^{*})]$
$\Sigma N(I = \frac{3}{2})$	(27)	(10)

Difficulties of **Sp** scattering experiment

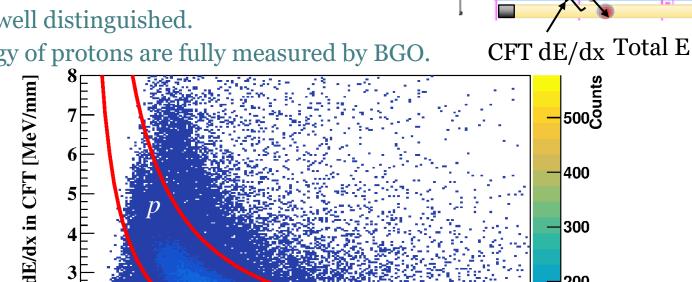

- Generally, hyperon-nucleon scattering experiment is difficult.
 - Short life time of hyperons : 10⁻¹⁰ s
 - Difficulty of producing plenty of hyperon beam
 - Difficulty of detection and identification of scattering hyperon
 - Previous Σp scattering experiments could identify only a few tens of events.
- How do we overcome these difficulties?
 - $\, \circ \,$ High rate π beam and large acceptance spectrometer
 - Producing and tagging large amount of incident $\boldsymbol{\Sigma}$
 - LH2 target and Surrounding detector system
 - Reconstructing reactions from two body kinematics
 - Detecting the recoil proton with large acceptance

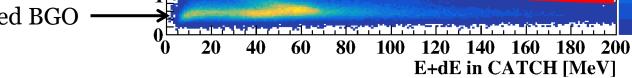
K1.8 beamline @hadron hall



Analysis:Σ⁺ production

Analysis:Σ⁺ production

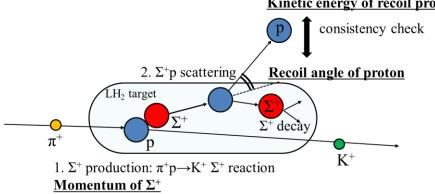

- Σ⁺ identification
 - Missing mass of $\pi^+p \rightarrow K^+X$ reaction
- Momentum of Σ^+
 - Missing momentum of π⁺, K⁺
 - Σ+p scattering analysis was performed for three separated momentum region
 - Low (0.44-0.55 GeV/c), Middle (0.55-0.65 GeV/c), High (0.65-0.80 GeV/c)


Analysis: CATCH part

- Tracking by CFT •
 - Particle trajectories are reconstructed.
- Particle identification
 - Using energy loss correlation between CFT & BGO
 - Protons are well distinguished.
 - Kinetic energy of protons are fully measured by BGO.

 π

 π penetrated BGO



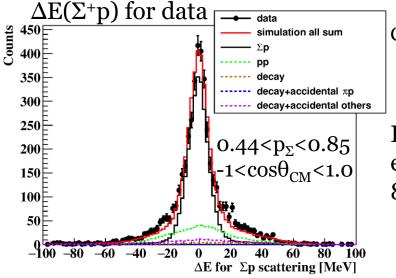
200

100

Kinematical identification of Σ +p scattering events

- Hereafter, we concentrate on events with 2 protons in final state.
 - $\Sigma^+ p$ scattering followed by $\Sigma^+ \rightarrow p\pi^o$ decay <u>Kinetic energy of recoil proton</u>

Checking a kinematical consistency for recoil proton

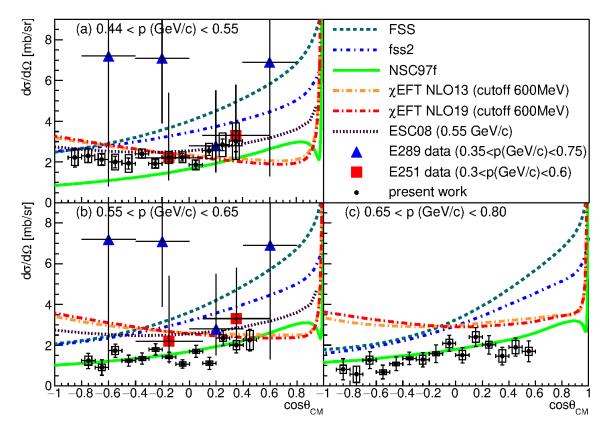

• E_{meas} : measured kinetic energy with CATCH • E_{calc} : calculated kinetic energy from incident Σ^+

momentum and recoil angle

 $\Delta E(\Sigma^+ p) = E_{meas} - E_{calc}$

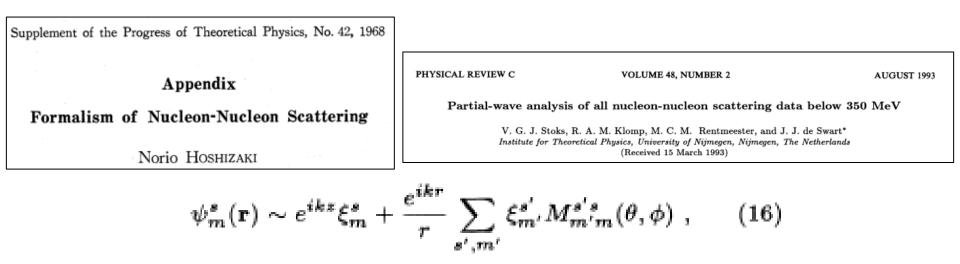
• For Σ^+ p scattering events, ΔE distributes around 0.

• A proton which minimize $|\Delta E|$ value was chosen as the recoil proton from two detected protons.



Cut conditions to select Σ +p scattering events were applied. vertex position, distance between tracks kinematical consistencies for decay proton, other reactions

In total, approximately 2400 Σ^+ p scattering events were identified ! 80 times more than past KEK experiments


Differential cross sections

- Differential cross sections were derived from \sim 2400 Σ^+ p scattering events.
 - The data quality has beem significantly improved!
 - Main sources of systematic error: background estimation, efficiency for low momentum proton.
 - FSS and fss2 are obviously larger. On the other hand, ESC08, NSC97f are consistent to some extent.
 - Note:NSC97f suggests the attractive ${}^{3}S_{1}$ interaction, which does not agree with the current common understanding of ΣN interaction.

Phase shift analysis

- Extracting the contribution of the ${}^{3}S_{1}$ is important to study the repulsive nature of $\Sigma^{+}p$ system due to the quark Pauli effect.
- Referring to formalism of NN scattering, the differential cross section was calculated as a function of phase shifts and we tried to fit data.

Phase shift analysis

• We considered contribution by D wave(L<=2), and Coulomb effects were merely ignored.(bar phase shifts were regarded as nuclear bar phase shifts)

$$I_0 = \frac{1}{4} |M_{0,0}^{0,0}|^2 + \frac{1}{2} |M_{1,1}^{1,1}|^2 + \frac{1}{4} |M_{0,0}^{1,1}|^2 + \frac{1}{2} |M_{0,1}^{1,1}|^2 + \frac{1}{2} |M_{1,0}^{1,1}|^2 + \frac{1}{2} |M_{1,-1}^{1,1}|^2$$
(5.3)

$$M_{0,0}^{0,0} = h_{1S_0} + 3h_{1P_1}\cos\theta + 5h_{1D_2} \times \left(\frac{3\cos^2\theta - 1}{2}\right),\tag{5.4}$$

$$M_{1,1}^{1,1} = (h_{3S_{1}} - \frac{\sqrt{2}}{2}h^{3S_{1}-3D_{1}}) + \left(\frac{3}{2}h_{3P_{2}} + \frac{3}{2}h_{3P_{1}}\right)\cos\theta + \left(2h_{3D_{3}} + \frac{5}{2}h_{3D_{2}} + \frac{1}{2}h_{3D_{1}} - \frac{\sqrt{2}}{2}h^{3S_{1}-3D_{1}}\right) \times \frac{3\cos^{2}\theta - 1}{2},$$
(5.5)

$$M_{0,0}^{1,1} = (h_{^{3}S_{1}} + \sqrt{2}h^{^{3}S_{1} - {}^{3}D_{1}}) + (2h_{^{3}P_{2}} + h_{^{3}P_{0}})\cos\theta + (3h_{^{3}D_{3}} + 2h_{^{3}D_{1}} + \sqrt{2}h^{^{3}S_{1} - {}^{3}D_{1}}) \times \frac{3\cos^{2}\theta - 1}{2},$$
(5.6)

$$\begin{split} M_{0,1}^{1,1} &= \left(-\frac{3}{2\sqrt{2}} h_{^{3}P_{2}} + \frac{3}{2\sqrt{2}} h_{^{3}P_{1}} \right) \times (-\sin\theta) \\ &+ \left(-\frac{4}{3\sqrt{2}} h_{^{3}D_{3}} + \frac{5}{6\sqrt{2}} h_{^{3}D_{2}} + \frac{1}{2\sqrt{2}} h_{^{3}D_{1}} - \frac{1}{\sqrt{2}} h^{^{3}S_{1}-^{3}D_{1}} \right) \times (-3\cos\theta\sin\theta), \end{split}$$
(5.7)
$$M_{1,0}^{1,1} &= \left(\frac{1}{\sqrt{2}} h_{^{3}P_{2}} - \frac{1}{\sqrt{2}} h_{^{3}P_{0}} \right) \times (-\sin\theta) + \left(\frac{1}{\sqrt{2}} h_{^{3}D_{3}} - \frac{1}{\sqrt{2}} h_{^{3}D_{1}} - \frac{1}{\sqrt{2}} h^{^{3}S_{1}-^{3}D_{1}} \right) \times (-3\cos\theta\sin\theta),$$
(5.7)

$$M_{1,-1}^{1,1} = \left(\frac{1}{6}h_{^{3}D_{3}} - \frac{5}{12}h_{^{3}D_{2}} + \frac{1}{4}h_{^{3}D_{1}} - \frac{1}{2\sqrt{2}}h^{^{3}S_{1}-^{3}D_{1}}\right) \times (3\sin^{2}\theta), \tag{5.9}$$

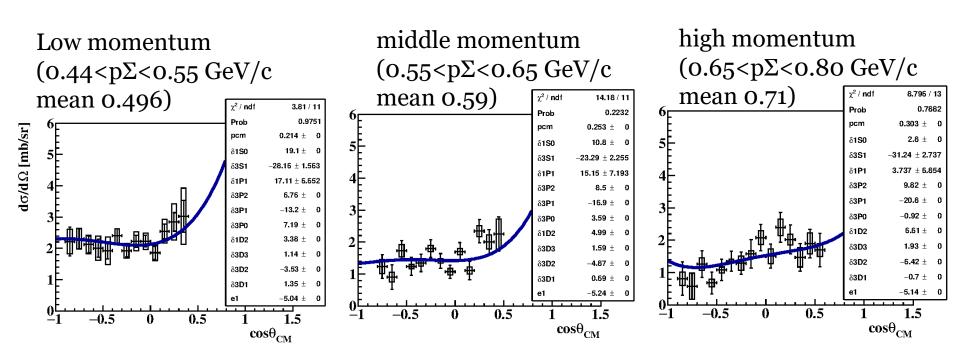
where partial wave amplitude h were defined as

$$h_{2S+1L_J} = \begin{cases} \frac{1}{2ik} (\cos(2\bar{\epsilon}_1) \exp(2i\bar{\delta}_{2S+1L_J}) - 1) & ({}^3S_1 \text{ and } {}^3D_1 \text{ case}) \\ \frac{1}{2ik} (\exp(2i\bar{\delta}_{2S+1L_J}) - 1) & (\text{else}) \end{cases}$$
(5.10)
$$h^{{}^3S_1 - {}^3D_1} = \frac{1}{2k} \sin(2\bar{\epsilon}_1) \exp(i\bar{\delta}_{3S_1} + i\bar{\delta}_{3D_1}).$$
(5.11)

Phase shift analysis

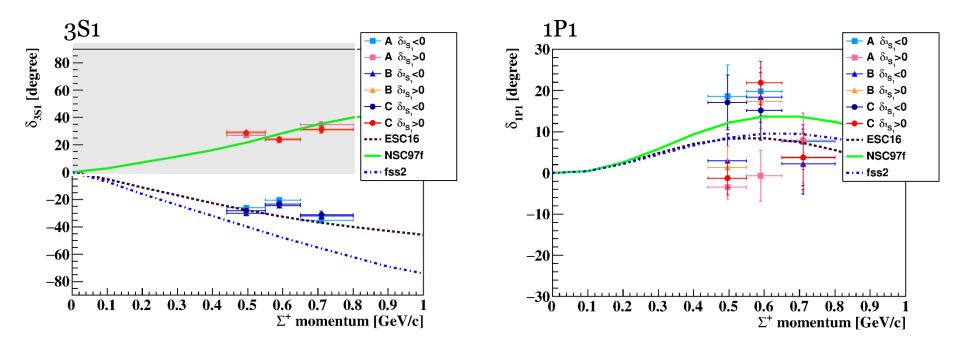
- The function $I_0(\theta, p, \delta[27](p), \delta[10](p))$ has 11 phase shift parameters.
 - $\ \ \, \boldsymbol{\delta}[27] = \{ \delta_{1\text{S}0}, \delta_{3\text{P}2}, \delta_{3\text{P}1}, \delta_{3\text{P}0}, \delta_{1\text{D}2} \}, \, \boldsymbol{\delta}[10] = \{ \delta_{3\text{S}1}, \delta_{1\text{P}1}, \delta_{3\text{D}3}, \delta_{3\text{D}2}, \delta_{3\text{D}1}, \epsilon_1 \}$
- $\pmb{\delta}[27]$ are well constrained from NN data and are regarded as constants taken from
 - <u>pp scattering</u> based on complete SU(3)f symmetry.
 - Less realistic, but independent from baryon-baryon interaction model.
 - <u>NSC97f or ESC16</u> in order to approximately consider the effect of the flavor symmetry breaking and the difference of meson exchange potential.
- δ [10] are to be investigated, but 6 parameters are still too much to perform meaningful fitting.
 - only δ_{3S1} and δ_{1P1} were treated as free parameters.
 - Rest 4 parameters $(\delta_{3D3}, \delta_{3D2}, \delta_{3D1}, \text{ and } \epsilon_1)$ are fixed at 0 or NSC97f and ESC16.

Note : the sign of δ_{3S1} cannot be determined. Positive and negative cases are examined.


BB channel $\left(I\right)$	1 Even or 3 Odd	3 Even or 1 Odd
NN(I = 0)	-	(10 *)
NN(I = 1)	(27)	-
$\Lambda N(I=\frac{1}{2})$	$\frac{1}{\sqrt{10}}[(8_{s}) + 3(27)]$	$\frac{1}{\sqrt{2}}[-(8_{a})+(10^{*})]$
$\Sigma N(I=\tfrac{1}{2})$	$\frac{1}{\sqrt{10}}[3(8_s) - (27)]$	$\frac{1}{\sqrt{2}}[(8_a) + (10^*)]$
$\Sigma N(I = \frac{3}{2})$	(27)	(10)

Fitting results

• Fixed phase shifts are taken from ESC16


14

- δ_{3S1} <0 case
- χ^2 /ndf is approximately 1.

Obtained phase shifts

- ${}^{3}S_{1}$:almost consistent with ESC16 ($\delta < 0$) or NSC97f ($\delta > 0$).
 - $|\delta|: 28.3 \pm 1.5 \pm 2.1$ (low), $23.4 \pm 2.0 \pm 3.0$ (mid), $32.5 \pm 2.5 \pm 2.5$ (high)
 - Fitting error and effect of the different sets of the fixed parameters
 - The interaction in this channel is moderately repulsive.
- ¹P₁:ambiguous.
 - They may support the prediction of the fss2, ESC16, NSC97f in which the interaction of 1P1 channel is weakly attractive.

Summary

- Hyperon-nucleon scattering experiment gives us very important information for B-B interaction, especially quark Pauli effect.
- J-PARC E40 Experiment
 - High-statistics Σp scattering experiment
 - Σ^+ p elastic scattering, Σ^- p elastic scattering, Σ^- p $\rightarrow \Lambda n$ inelastic scattering
 - Data taking was finished by June 2020.
- $d\sigma/d\Omega$ were derived from approximately 2,400 Σ^+ p scattering events.
 - We successfully performed difficult YN scattering experiment!
- By not only comparison with the existing theoretical calculations but also derivation of the phase shifts of the ${}^{3}S_{1}$ and ${}^{1}P_{1}$ channels, the nature of $\Sigma^{+}p$ interaction was investigated.
 - The differential cross sections and absolute value of the δ^3S_1 were not as large as fss2 and FSS predicted and rather consistent with Nijmegen models.