

14th International Conference on Hypernuclear and Strange Particle Physics (HYP2022) Jun. 27 – Jul. 1, 2022

Hypernuclear production spectroscopy with an extended shell model

Atsushi UMEYA (Nippon Inst. of Tech.)

collaborated with

Toshio MOTOBA (RCNP, Osaka Univ. / Osaka E-C Univ.)

Kazunori ITONAGA (Miyazaki Univ. / Gifu Univ.)

Introduction

- In production of hypernuclei, (*e*, *e'K*⁺) reaction experiments with high-resolution have been performed at Jlab.
- New projects of (K^-, π^-) and (π^+, K^+) reaction experiments with high-intensity and high-resolution are being at J-PARC.
- Detailed look in Jlab (*e*, *e'K*⁺) spectroscopic data requires an extended description with multi-configuration parity-mixing mediated by hyperon.
- We have extended the model space by introducing the new configuration which includes non-normal parity nuclear core-excited states.
- We will show the DWIA cross-sections of $(K^-, \pi^-), (\pi^+, K^+)$, and (γ, K^+) reactions.
- We focus on the *p*-state Λ hyperon in the *p*-shell Λ hypernuclei.

Jun. 30, 2022

Recent $(e, e'K^+)$ reaction experiments done at the Jefferson Lab

Recent experimental result

T. Gogami et al., PRC93, 034314 (2016)

Shell-model prediction

- T. Motoba et al., PTPS117, 123 (1994)
- Core nucleus calculated with conventional *p*-shell model
- A in *s*-orbit

This experiment has confirmed the major peaks (#1, #2, #3, #4) predicted in DWIA by emplying the Λ particle in *s*-orbit coupled with the nuclear core states confined within the *p*-shell configuration.

However, it is interesting to observe extra strengths at $E_{\Lambda} = 0$ MeV excitation (a).

The extension of the model space is necessary and interesting challenge in view of the present hypernuclear spectroscopy.

Jun. 30, 2022

Recent $(e, e'K^+)$ reaction experiments done at the Jefferson Lab

Recent experimental result

T. Gogami et al., PRC93, 034314 (2016)

Shell-model prediction

- T. Motoba et al., PTPS117, 123 (1994)
- Core nucleus calculated with conventional *p*-shell model
- A in *s*-orbit

This experiment has confirmed the major peaks (#1, #2, #3, #4) predicted in DWIA by emplying the Λ particle in *s*-orbit coupled with the nuclear core states confined within the *p*-shell configuration.

However, it is interesting to observe extra strengths at $E_{\Lambda} = 0$ MeV excitation (a).

The extension of the model space is necessary and interesting challenge in view of the present hypernuclear spectroscopy.

Jun. 30, 2022

Framework of extended shell model ($^{10}_{\Lambda}$ Be case)

In the conventional shell model, only natural-parity nuclaer-core states (J_{core}^-) are taken into account. A particle is in the 0s orbit in ${}^{10}_{\Lambda}\text{Be}(J^-)$.

In ${}^{10}_{\Lambda}$ Be(J^+), the energy difference between $\Lambda(0s)$ and $\Lambda(0p)$ is $1\hbar\omega$, and the energy difference between 9 Be(J^-_{core}) and 9 Be(J^+_{core}) is $1\hbar\omega$.

By ΛN interaction, natural-parity nuclaer-core configurations and unnatural-parity nuclaer-core configurations can be mixed.

Extended model space for target nucleus ¹⁰B

Extension of model space for target nucleus ¹⁰B up to 2*p*-2*h* (2 $\hbar\omega$) allows the ¹⁰_ABe production through various configurations.

Extended model space for target nucleus ¹⁰B

Extension of model space for target nucleus ¹⁰B up to 2p-2h ($2\hbar\omega$) allows the ¹⁰_{Λ}Be production through various configurations.

Jun. 30, 2022

Extended model space for target nucleus ¹⁰B

Extension of model space for target nucleus ¹⁰B up to 2*p*-2*h* (2 $\hbar\omega$) allows the ¹⁰_{Λ}Be production through various configurations.

Jun. 30, 2022

Results : Energy levels of ${}^{9}Be$ and ${}^{10}_{\Lambda}Be$

Jun. 30, 2022

Results : Energy levels of ${}^{9}Be$ and ${}^{10}_{\Lambda}Be$

Results : Cross sections of the ¹⁰B (γ , K^+) ¹⁰_ABe reaction (1)

Recent experimental result T. Gogami *et al.*, PRC93, 034314 (2016)

For hypernucleus ${}^{10}_{\Lambda}$ Be (1) 1*p*-1*h* (1 $\hbar\omega$) core excitation (2) Configration mixing by ΛN int. are taken into account

DWIA calculation by using Saclay-Lyon model A

Our new calculation reproduces the four major peaks (#1, #2, #3, #4).

Our new calculation explains the
¹⁰ new bump (a) as a sum of cross sections of some J⁺ states.

Jun. 30, 2022

Results : Cross sections of the ¹⁰**B** (γ , K^+) ¹⁰_{Λ}Be reaction (2)

		E_{γ} = 1.5 GeV					EXP = T. Gogami et al, PRC93 (2016)				
	⁹ Be (<i>J</i> _i)		۸ ¹⁰	Be (<i>J_k</i>) C	AL	$\theta = 7 \deg$	9			EXP	Fit I
Ji	E _i (exp)	<i>Ei</i> (cal)	J_k	E _x	<i>−B</i> ∧	dσ/dΩ		exp	E _x	<i>−B</i> ∧	dσ/dΩ
	C2S	C2S		[MeV]	[MeV]	[nb	/sr]	peak	[MeV]	[MeV]	[nb/sr]
3/2-	0.000	0.000	1-	0.000	-8.600	9.609	21.62	#1	0.00	-8.55±0.07	17.0±0.5
-	1.0(rel)	1.0(rel)	2-	0.165	-8.435	12.008					
5/2-	2.429	2.644	<mark>2⁻</mark>	2.712	-5.888	11.654	21.05	#2	2.78±0.11	-5.76±0.09	16.5±0.5
	0.958	1.020	<mark>3⁻</mark>	2.860	-5.740	9.391					
7/2-	6.380	6.189	3-	6.183	-2.417	7.625		#3	6.26±0.16	-2.28±0.14	10.5±0.3
112	0.668	0.942	<mark>0</mark>	6.370	-2.230	13.505					
			• 	0.070	2.200	10.000					
			2+(3)	7.807	-0.793	4.495	9.46		8.34±0.41	-0.20±0.40	23.2±0.7
			1+(3)	7.935	-0.665	4.968	9.40				
			3+(2)	8.712	0.112	6.150		#a			
			2+(4)	8.828	0.228	1.431	19.91	#a			
			2+(5)	9.002	0.402	9.893	(29.37)				
			3+(3)	9.059	0.459	2.434					
	44,000	10.011		40.405	4 505	0.040					
7/2-	11.283	10.241	<u></u> 3 [_]	10.105	1.505	3.913	21.90	#4	10.83±0.10	2.28±0.07	17.2±0.5
	1.299	1.355	<u>4</u> -	10.455	1.855	17.985					
			1+(5)	10.828	2.228	4.598					
			4+(3)	11.318	2.718	11.185		L			
			3+(5)	11.543	2.943	13.759					

Jun. 30, 2022

Results : Configrations of J^+ states corresponding to the new bump

$J_n^{\pi}(-B_{\Lambda}[\text{MeV}])$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$
XS [nb/sr]			
$2^+_3(-0.739)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
4.49		82.5%	15.8%
$1_3^+(-0.665)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-]p_{3/2}^{\Lambda}$
4.97		79.5%	17.9%
$2_4^+(0.228)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
1.43	87.5%	9.4%	2.4%
$2_5^+(0.402)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
9.89	11.3%	70.9%	10.8%
$3_2^+(0.112)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p_{3/2}^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
6.15	31.6%	55.4%	9.7%
$3_3^+(0.459)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p_{3/2}^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
2.43	67.5%	27.1%	2.7%

Jun. 30, 2022

$[p^{-1}p^{\Lambda}_{\perp}]$ and $[p^{-1}p^{\Lambda}_{\prime\prime}]$ states of ${}^{9}_{\Lambda}$ Be

In ${}^{9}_{\Lambda}$ Be, it is well known that the p_{Λ} -state splits into two orbital states expressed by p_{\perp} and p_{\parallel} , which is due to the strong coupling with nuclear core deformation having the α - α structure. T. Motoba *et al.*, PTPS81, 42 (1985) R. H. Dalitz, A. Gal, PRL36, 362 (1976); AP131, 314 (1981)

Jun. 30, 2022

Results : Comparison to the cluster model – Cross section –

Jun. 30, 2022

Results : Cross sections of ⁹Be (K^-, π^-) and ⁹Be (π^+, K^+) reactions

Results : Cross sections of the ¹⁰B (K^-, π^-) ¹⁰_AB reaction (1)

In the (K^-, π^-) reaction, the large peak at $E_{\Lambda} = 4.4$ MeV is a *p*-substitutional state via the $p_{3/2}^N \rightarrow p_{3/2}^{\Lambda}$, which is strongly excited by recoilless reaction.

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ corresponds to the new bump and is explained as a mixture of s^{Λ} and p^{Λ} states.

The large peak at $E_{\Lambda} = 4.4 \text{ MeV}$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p_{\perp}^{\Lambda}]$ state in ${}^{9}_{\Lambda}\text{Be}$ (⁹Be analog state).

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p^{\Lambda}_{//}]$ state in ${}^{9}_{\Lambda}\text{Be}$.

Results : Cross sections of the ¹⁰B (K^-, π^-) ¹⁰_AB reaction (2)

CONCLUDE:

 $\alpha \alpha$ -like core deformation causes splitting of p^{Λ} -states, then lowenergy $p_{//}^{\Lambda}$ can mix with s^{Λ} -states.

 $[{}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})] + [{}^{9}\text{Be}(J^{+}) \times \Lambda(s)]$

These parity-mixed wave functions at $E_{\Lambda} = 0 \text{ MeV}$ can explain the extra peak #a.

Jun. 30, 2022

Results : Energy of $p_{\prime\prime}$ -state

The p^{Λ} -state splits into p_{\perp} - and $p_{//}$ -states due to the strong coupling with nuclear core deformation.

In ${}^{9}_{\Lambda}$ Be, the enregy of $p_{//}^{\Lambda}$ -state comes down to $E_x \approx 7$ MeV from the Λ single-particle energy difference $\varepsilon_p^{\Lambda} - \varepsilon_s^{\Lambda} \approx 11$ MeV.

The bump at $E_x \approx 8 \text{ MeV}$ in the cross sections of ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $p^{\Lambda}_{//}$ -state.

In the cross sections of ${}^{11}_{\Lambda}$ B, the small 5/2⁻ peak at $E_x \approx 9$ MeV corresponds to the $p^{\Lambda}_{\prime\prime}$ -state.

The energy splitting between p_{\perp} - and $p_{//}$ states in ${}^{11}_{\Lambda}B$ is smaller than that in ${}^{9}_{\Lambda}Be$, which is due to the small deformation of the nuclear core in ${}^{11}_{\Lambda}B$.

Jun. 30, 2022

p^{Λ} state in the deformed nuclear core

In the spherical nuclear core, p^{Λ} -state does not split into $p^{\Lambda}_{//}$ and p^{Λ}_{\perp} .

The new type wave function should appear in ${}^{9,10}_{\Lambda}$ Be and ${}^{10,11}_{\Lambda}$ B due to the core deformation, but "not" in spherical systems without enough deformation.

Summary

We have calculated the DWIA production cross sections for *p*-shell hypernuclei by using the extended shell model.

- Strong coupling between *p*-state Λ and core deformation is realized in ${}^{9,10}_{\Lambda}\text{Be}$ and ${}^{10,11}_{\Lambda}\text{B}$.
- In these nuclei, p^{Λ} -state splits into $p^{\Lambda}_{/\!/}$ and p^{Λ}_{\perp} .
- In ${}^{10}_{\Lambda}$ Be, the lower $p_{//}^{\Lambda}$ comes down in energy and $[{}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})]$ couples easily with $[{}^{9}\text{Be}(J^{+}) \times \Lambda(s)]$.
- Such new type wave functions should appear in ${}^{9,10}_{\Lambda}Be$ and ${}^{10,11}_{\Lambda}B$ due to the core deformation.

The finding of peak #a in ${}^{10}B(e, e'K^+) {}^{10}_{\Lambda}Be$ is a novel evidence for genuine hypernuclear wave function with parity-mixing realized in "deformed" hypernuclei.