Contribution ID: 97

Type: online talk

Hypernuclear production spectroscopy with an extended shell model

Thursday, 30 June 2022 11:00 (15 minutes)

The $(e, e'K^+)$ reaction experiments with several nuclear targets performed recently at the Jefferson Lab have provided high-resolution spectroscopic data. They are very fruitful in disclosing hypernuclear structure details and also in understanding hyperon-nucleon fundamental interaction properties.

Among others, the ¹⁰B ($e, e'K^+$) ${}^{10}_{\Lambda}$ Be reaction data are quite interesting, because they have shown extra subpeaks which seem difficult to be explained within the conventional model with the *p*-shell nuclear natural-parity configurations. In order to describe this novel hypernuclear structure, we have extended the model space by introducing the new configurations which include unnatural-parity nuclear core-excited states. In the extended model for each hypernuclear state of J^{\pm} , we take four types of configurations, $[J^+_{c(i)} \otimes s^{\Lambda}]_{J^+}$, $[J^+_{c(i)} \otimes p^{\Lambda}]_{J^-}$, $[J^-_{c(i)} \otimes s^{\Lambda}]_{J^-}$, and $[J^-_{c(i)} \otimes p^{\Lambda}]_{J^+}$, where $J^{\pm}_{c(i)}$ denotes all the possible spin-parity states of core-nucleus, and s^{Λ} and p^{Λ} denote the single-particle states of Λ hyperon. We take into account all the states of core-nuclei in the $0\hbar\omega$ and $1\hbar\omega$ space, which are labeled with *i*. It is interesting to point out that the nuclear core eigenstates with different parities are mixed by the Λ participation. For the ${}^{10}_{\Lambda}$ Be hypernucleus, natural-and unnatural-parity nuclear-core configurations, $[J^+_{c(i)} \otimes p^{\Lambda}]_{J^-}$ and $[J^-_{c(i)} \otimes p^{\Lambda}]_{J^-}$ and $[J^-_{c(i)} \otimes p^{\Lambda}]_{J^-}$ and $[J^-_{c(i)} \otimes p^{\Lambda}]_{J^-}$ and mutual the states of Λ interaction at appropriate excitation energy. We emphasize that, for the first time, this configuration mixing successfully explains the extra subpeaks in the 10 B ($e, e'K^+$) reaction experiments.

For adjacent hypernuclei with A = 9-12, we will show the energy levels and the DWIA cross-sections of (K^-, π^-) , (π^+, K^+) , and (γ, K^+) reactions that are calculated within the extended model space. We focus on the interesting behavior of Λ *p*-state. In ${}^9_{\Lambda}$ Be, it is well known that the Λ *p*-state splits into two orbital states, *p*-perpendicular and *p*-parallel states, which is due to the strong coupling with nuclear core deformation having the α - α structure. We will discuss the theoretical spectrum of ${}^{10}\text{B}$ (K^-, π^-) ${}^{10}_{\Lambda}\text{B}$ and ${}^{11}\text{B}$ (K^-, π^-) ${}^{11}_{\Lambda}\text{B}$ reactions, and will show the two peaks corresponding to the *p*-perpendicular and *p*-parallel states. The extended model study will be useful for new projects of ($K^-, \pi^-\gamma$) and ($\pi^+, K^+\gamma$) reaction experiments with high-intensity and high-resolusion that are being planned at J-PARC.

Primary author: Dr UMEYA, Atsushi (Nippon Institute of Technology)

Co-authors: Prof. MOTOBA, Toshio (Research Center for Nuclear Physics, Osaka University); Prof. ITONAGA, Kazunori (Miyazaki University)

Presenter: Dr UMEYA, Atsushi (Nippon Institute of Technology)

Session Classification: 4; Thu-IIb