Recent progress and future prospects of hyperon nucleon scattering experiment

Koji Miwa (Tohoku Univ., KEK) for the J-PARC E40, P86 Collaborations

HYP2022, June 27th- July 1st, 2022

Contents

- Introduction
- Σp scattering experiment (J-PARC E40)
 - Σ^{-} p channels (Differential cross sections)
 - Σ^+ p elastic scattering (Differential cross sections and phase-shift analysis)
- Future project : Λp scattering with polarized Λ beam
- Summary

Realistic nuclear force : base for nuclear physics

Realistic Nucleon-Nucleon Potential (CD Bonn, AV18, Nijmegen I, II)

Updated based on a lot of scattering observables of NN scattering

Solid base for nuclear studies

Realistic nuclear force : base for nuclear physics

Realistic Nucleon-Nucleon Potential (CD Bonn, AV18, Nijmegen I, II)

Updated based on a lot of scattering observables of NN scattering

Solid base for nuclear studies

Realistic nuclear force : base for nuclear physics

Realistic Nucleon-Nucleon Potential (CD Bonn, AV18, Nijmegen I, II)

Updated based on a lot of scattering observables of NN scattering

Solid base for nuclear studies

7

8

Good quality two-body scattering data are necessary !

9

Good quality two-body scattering data are necessary !

Verification of quark Pauli repulsion

4.0

Verification of quark Pauli repulsion

Verification of quark Pauli repulsion

Constraint for BB int. theories

Verification of quark Pauli repulsion

Constraint for BB int. theories

Verification of quark Pauli repulsion

Constraint for BB int. theories

J-PARC E40 experimental setup

Two successive two-body reactions

J-PARC E40 experimental setup

Two successive two-body reactions

$\boldsymbol{\Sigma}$ beam identification

$\boldsymbol{\Sigma}$ beam identification

 Σ beam in LH_2 target is tagged by the magnetic spectrometers

Σ beam identification

Recoil proton identification

Recoil proton identification

Recoil proton identification

d σ /d Ω of np scattering from Σ^- decay

The derived $d\sigma/d\Omega$ of np scattering are reasonable.

Kinematical identification of Σ^-p scatterings

Check kinetic energy difference between

- E_{measured} : measured energy
- E_{calc} : calculated energy from scattering angle based on Σ -p elastic scattering kinematics

 $\Delta E(\Sigma^{-}p) = E_{\text{measured}} - E_{\text{calc}}$

Kinematical identification of Σ^-p scatterings

Check kinetic energy difference between

- E_{measured} : measured energy
- E_{calc} : calculated energy from scattering angle based on $\Sigma^{-}p$ elastic scattering kinematics

26

 $\Delta E(\Sigma^{-}p) = E_{\text{measured}} - E_{\text{calc}}$

Kinematical identification of Σ^-p scatterings

Check kinetic energy difference between

- E_{measured} : measured energy
- E_{calc} : calculated energy from scattering angle based on Σ⁻p elastic scattering kinematics

 $\Delta E(\Sigma^{-}p) = E_{\text{measured}} - E_{\text{calc}}$

 $\Delta E(\Sigma p)$ distribution

 $\Delta p (\Sigma p \rightarrow \Lambda n)$ distribution

$d\sigma/d\Omega$ of the Σ^-p channels

Clear forward peaking angular dependence

Comparison with theories

- fss2, Chiral EFT show a reasonable angular dependence.
- Nijmegen ESC models clearly underestimate the forward angle.

$d\sigma/d\Omega$ of Σ^+p elastic scattering T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

 Σ^+ p scatterng

6 quarks can stay in s state in normal case

The more repulsive potential in ${}^{3}S_{1}$ \rightarrow The larger d σ /d Ω (like fss2)

$d\sigma/d\Omega$ of Σ^+p elastic scattering T.N. Talk

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

E40 data : much smaller than fss2 prediction and E289 results

$d\sigma/d\Omega$ of Σ^+p elastic scattering T.N. Talk

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

E40 data : much smaller than fss2 prediction and E289 results

Comparison with theories

- fss2, FSS (quark model) are too large compared to data
- Chiral EFT's momentum dependence does not match with data
- Nijmegen (ESC) models are rather consistent.

Phase shift analysis

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

Phase shift analysis

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

Phase shift analysis for $\Sigma^+ p \ d\sigma/d\Omega$

- Two parameters : $\delta({}^{3}S_{1}), \delta({}^{1}P_{1})$
- Other phase shifts up to D wave :

fixed on NSC97f, ESC16, pp scat

Phase shift analysis

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

Derived phase shift suggest that the ${}^{3}S_{1}$ interaction is moderately repulsive.

Toward Ap scattering

<u>Reliable ΛN two-body interaction :</u>

key to deepen Λ hypernuclear physics

Toward Ap scattering

<u>Reliable ΛN two-body interaction :</u>

key to deepen Λ hypernuclear physics

Femtoscopy from HIC

ALICE Collaboration, arXiv:2104.04427

New cross section data from Jlab CLAS

J. Rowley et al. (CLAS), Phys. Rev. Lett. 127 (2021) 272303

Toward Ap scattering

<u>Reliable ΛN two-body interaction :</u>

key to deepen Λ hypernuclear physics

Femtoscopy from HIC

ALICE Collaboration, arXiv:2104.04427

New cross section data from Jlab CLAS

J. Rowley et al. (CLAS), Phys. Rev. Lett. 127 (2021) 272303

New project at J-PARC

 Λp scattering w/ polarized Λ

- Feasibility test w/ E40 data
- Expected results in new experiment

Feasibility study in E40 (Σp scattering)

Feasibility study in E40 (Σ p scattering)

Feasibility study in E40 (Σp scattering)

Feasibility study in E40 (Σp scattering)

Λ polarization measurement

 Λ polarization measurement in E40

42

Λ polarization measurement

Λp scattering identification

<u>From ~2.5x10⁴ Λ beam</u>

 Λp scattering events are confirmed!

Λp scattering identification

<u>From ~2.5x10⁴ Λ beam</u>

Hadron Experimental Facility Extension (HEF-EX) project

high-p (30GeV primary proton beam) π 20(20GeV/c secondary beam)

Hadron property in nuclear medium Baryon spectroscopy

Baryon spectroscopy

Perform physics not accessible in the present hadron hall Perform physics programs in parallel with twice more beam lines

Λp scattering experiment with polarized Λ beam

Λ beam identification

J-PARC P86 (J-PARC EX project)

Λp scattering experiment with polarized Λ beam

$d\sigma/d\Omega$ and Spin observables in Λp scattering

No differential observables of Λp scattering SO FAR

Simulated results w/ $10^8 \Lambda$

--> Large uncertainty in P-wave and higher-wave interaction.

Theoretical prediction shows quite different angular dependence in $d\sigma/d\Omega$, A_v and D_v^y

These new scattering data become essential constraint to determine spin-dependent ΛN interaction

Summary

- BB interactions are important to understand
 - Generalized meson-exchange picture with (broken) $SU_F(3)$ symmetry
 - Role of quarks at the short range
 - Dynamics of nuclear system with hyperon (hypernuclei, neutron star) as its basic interaction
- YN scattering experiment gets possible!
- Systematic measurements of Σp scattering at J-PARC
 - $d\sigma/d\Omega$ for Σ^+p , Σ^-p , $\Sigma^-p \rightarrow \Lambda n$ scatterings with ~10% level accuracy for fine angular pitch (dcos θ =0.1)
 - Momentum dependence of $\Sigma^+ p \, \delta({}^3S_1)$ channel was derived (-20 ~ -30 degrees)
- Future project to measure $d\sigma/d\Omega$ and spin observables of Λp scattering w/ polarized Λ beam
 - These measurements are important to reinforce the current ΛN interaction for deepening hypernuclear physics.

We hope our data become important inputs to improve theoretical models

E40 Collaborators

Tohoku Univ. : T. Aramaki, N. Chiga, N. Fujioka, M. Fujita, R. Honda, M. Ikeda, Y. Ishikawa, H. Kanauchi, S. Kajikawa, T. Kitaoka, T. Koike, K. Matsuda, Y. Matsumoto, K. Miwa, S. Ozawa, T. Rogers, T. Sakao, T. Shiozaki, H. Tamura, J. Yoshida H. Umetsu, S. Wada

JAEA : S. Hasegawa, S. Hayakawa, K. Hosomi, Y. Ichikawa, K. Imai, H. Sako, S. Sato, K. Tanida , T.O. Yamamoto,

KEK : Y. Akazawa, M. leiri, S. Ishimoto, I. Nakamura, S. Suzuki, H. Takahashi, T. Takahashi, M. Tanaka, M. Ukai

RIKEN : H. Ekawa

Chiba Univ. : H. Kawai, M. Tabata

Kyoto Univ. : S. Ashikaga, T. Gogami, T. Harada, M. Ichikawa, T. Nanamura, M. Naruki, K. Suzuki Osaka Univ. : K. Kobayashi, S. Hoshino, Y. Nakada, R. Nagatomi, M. Nakagawa, A. Sakaguchi RCNP : H. Kanda, K. Shirotori, T.N. Takahashi Okayama Univ. : K. Yoshimura Korea Univ. : J.K. Ahn, S.H. Kim, W.S. Jung, S.W. Choi, B.M. Kang OMEGA Ecole Polytechnique-CNRS/IN2P3 : S. Callier, C.d.L. Taille, L. Raux Joint Institute for Nuclear Research : P. Evtoukhovitch, Z. Tsamalaidze

