Contribution ID: 101

Type: talk

Constraints on Ξ^- nuclear interactions from capture events in emulsion

Monday 27 June 2022 15:30 (20 minutes)

Five $\Xi^- p \to \Lambda\Lambda$ two-body capture events in ¹²C and ¹⁴N emulsion nuclei, in which a pair of single- Λ hypernuclei is formed and identified by their weak decay, have been observed in (K^-, K^+) emulsion exposures at KEK and J-PARC. Applying a Ξ^- -nucleus optical potential methodology to study atomic and nuclear transitions, we confirm that these capture events occur from Coulomb assisted $1p_{\Xi^-}$ nuclear states. Long-range ΞN shell-model correlations are found essential to achieve consistency between the ¹²C and ¹⁴N events. The resulting Ξ -nuclear interaction is strongly attractive, with Ξ potential depth in nuclear matter $V_{\Xi} \ge 20$ MeV. Implications to multi-strangeness features of dense matter are outlined.

Authors: FRIEDMAN, Eliahu (Racah Institute of Physics, The Hebrew University); GAL, Avraham (Racah Institute of Physics, The Hebrew University)

Presenter: FRIEDMAN, Eliahu (Racah Institute of Physics, The Hebrew University)

Session Classification: 1; Mon-III