

HYP2022, Prague, 27/06/2022

X-ray spectroscopy on ≡ atoms (J-PARC E03, E07 and future)

T. O. Yamamoto (JAEA ASRC [Japan])

for the E07/E03 collaboration

14th International Conference on Hypernuclear and Strange Particle Physics

June 27 – July 1, 2022 Prague, Czech Republic

Contents

- ➤ X-ray spectroscopy of E⁻ atom
- ➤ Our first try [J-PARC E07]
- > Fe ∃ atom measurement [J-PARC E03]
 - >1st-phase data taking was completed!
- Future measurement [J-PARC E70 byproduct]
- > Summary

X-ray spectroscopy of E⁻-atom

We are aiming for world first measurement of X ray from **Ξ**⁻-atom

→ Information on the **ΞA** optical potential

- Information on (effective) EN interaction large baryon mixing? (small ΔM(ΞN-ΛΛ)=28 MeV)
- EA interaction
 and it's A dependence
 Role of E⁻ in neutron star?

Establishment of experimental method in the J-PARC E07/E03

→ Systematic measurement (over wide mass range) in future

X-ray spectroscopy of E⁻-atom

Measurement of energy shift and width

→ E⁻A real and imaginary terms (near surface)

This method has been successfully applied for negative charged particles $(\pi^-, K^-, \overline{p}, \Sigma^-)$

Physics motivation

Valuable information on EN (effective) interaction

Physics motivation

Valuable information on EN (effective) interaction

Impact on emulsion data

Stopped E⁻s form E-atoms before reaction

$$^{12}C + \Xi^{-} \rightarrow {}_{\Lambda\Lambda}^{6}He + {}^{4}He + t$$
$${}_{\Lambda\Lambda}^{6}He \rightarrow {}_{\Lambda}^{5}He + p + \pi^{-}.$$

$$B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$$

H. Takahashi et al, Phys. Rev. Lett. 87 (2001) 212502.

obtained from analysis of both production and decay point

Depends on B_{Ξ} of $C \Xi^-$ -atom $[B_{\Xi} = 0.13 \text{ MeV}]$

Phys. Rev. C59, 295 (2001)

Theoretical prediction:

3D absorption is dominant

Should be checked experimentally. (X-ray data will support $B_{\Lambda\Lambda}$ analysis)

Detailed information: Talk by M. Fujita (6/30)

Experimental study of double hypernuclei

Junya Yoshida (Advanced Science Research Center, JAEA)
On behalf of J-PARC E07 Collaboration

Measurement (1): Emulsion combined analysis

- S/N ratio [we can tag Ξ⁻ stop in emulsion]
- Yield rate ×
 - Low stop prob. (long flight, low density)
 - Mixture target (H, C, N, O, Br and Ag)
 - Not optimum setup for X-ray detector

Detailed information: Talk by M. Fujita (6/30)

No clear peak structure was observed. (upper limits were given)

Measurement (2): w/o emulsion info.

- S/N ratio △ [only SSD hit rejection]
- Yield rate △
 - Low stop probability (low density)
 - Not optimum setup for X-ray detector

Measurement (2): w/o emulsion info.

- S/N ratio △ [only SSD hit rejection]
- Yield rate △
 - Low stop probability (low density)
 - Not optimum setup for X-ray detector

Fe E atom measurement [J-PARC E03]

Feature of the measurement:

- S/N ratio △
 [we can not tag Ξ⁻ stop, but high stopping prob.]
- Yield rate O
 - High stop probability
 - Optimum detector setup

Advantage of Fe target

[Technical reason]

Enough dense (~7.9 g/cm³) for higher stopping probability of **Ξ**⁻

[Physics reason]

Absorption strength (and width) reported in theoretical case study

is suitable for our measurement

Calculated by T. Koike

(5,4) state : $\Delta E \sim \Gamma \sim 4 \text{keV}$ [W.S. shape potential of -24-3i MeV]

Recent Lattice & ChiralEFT calc.

Shows <1/10 smaller imaginary strength

Hyperball-X' for 1st phase

Constructed in 2020 for E03-1st phase

BGO suppressor

"clover-type" Ge detector (4 segmented crystals)

4 detector units covering up and down of the target

- Horizontally wide beam profile and target
- Self-absorption of X ray

	HBX'	НВЈ
High rate capability	△ * slow amp. * segmented crystal	* fast amp. * large crystal * radiation hardness
Energy resolution	2.5 keV (FWHM)	4 keV (FWHM)

Optimum for low (~250kHz) beam intensity

Γ~1keV case.

Higher energy resolution has great merit

- better peak significance
- small error on shift & width

Hyperball-X' for 1st phase

Constructed in 2020 for E03-1st phase

BGO suppr

4 detecto covering

- Horizonta
- Self-absc

Ge detector array Hyperball-X' "clover-type Constructed in the K1.8 beamline

Γ~1keV case,

Higher energy resolution has great merit

- better peak significance
- small error on shift & width

E03 data taking

We finished 1st phase data taking in 2021/4

Integrated # of Kaon beams at Iron target

[2021/4/7 SX beamtime end] Goal: 100G

Photo @ near hadron hall

Beam condition

K-: 410k/spill, π -: 90k/spill

We achieved 95G kaons!

with ~20 days beamtime

We got almost full statistics for 1st phase data taking

E03 preliminary result

Detailed information: Talk by Y. Ishikawa (6/29)

Analysis is now on-going.

This is very preliminary X-ray spectrum.

(not optimized event selection, background reduction and calibration)

Future measurement with S-2S

High resolution **Ξ**[−] hypernuclear spectroscopy with the same reaction.

Systematic measurement will be performed:

Target = $(12C (E70))^7$ Li (E75), etc. in future?

Our second try in 2023.

Chance for X-ray measurement in parallel

	S-2S	
Magnet Configuration	QQD	
Acceptance [msr]	55	
Magnetic field [T]	1.5	
Resolution [FWHM]	5.5 x 10 ⁻⁴	
Bending angle [deg]	70	

Active fiber target

First target for S-2S experiment: 12C (E70 physics run in 2023)

Active fiber target for energy loss correction

Merit for X-ray measurement Feature of the X-ray measurement:

- S/N ratio (we can tag = stop)
- Yield rate X
 - Very low stop probability (low density)
 - **Smaller acceptance of S-2S**

Active fiber target

x [mm]

>90% of produced Ξ^- will decay before stop in target

~95% background reduction may much improve S/N

y [mm]

Second try for C-atom measurement

By installing Ge detectors near AFT system,

parallel data taking

can be done in E70 beamtime

[expected in 2023]

Expected spectrum with E70 physics beamtime [2023]

We have chance to observe X ray

Now, we are submitting the proposal and preparing detectors.

Timeline of X-ray spectroscopy of E⁻-atom

at the J-PARC K1.8 beam line

Summary

We are aiming for world first measurement of X ray from Ξ⁻-atom

- → Information on the **ΞA** optical potential
 - Test of Experimental technique in J-PARC E07 [X-ray spectroscopy: C, Br, Ag-atom]
 - ➤ E03 (Ξ⁻ Fe-atom measurement)
 2 phase strategy for current ACC condition
 - **▶**1st-phase data taking [2020-2021]
 - Future measurement in S-2S exp. (J-PARC E70) [X-ray spectroscopy: C-atom]