Contribution ID: 113

Type: talk

Lifetime of the hypertriton

Monday, 27 June 2022 12:15 (25 minutes)

Recent relativistic heavy ion (RHI) collision experiments have extracted conflicting values of the hypertriton $\binom{3}{\Lambda}$ H) lifetime ($\tau(^{3}_{\Lambda}$ H)). While the ALICE Collaboration's reported $\tau(^{3}_{\Lambda}$ H) is comparable to the free Λ lifetime, the STAR Collaboration's reported value is considerably shorter. A similarly large spread of values has been obtained also in earlier measurements.

Recently, we revisited theoretically this ${}^{3}_{\Lambda}$ H lifetime puzzle [1], using ${}^{3}_{\Lambda}$ H and 3 He wave functions computed within the *ab initio* no-core shell model employing interactions derived from chiral effective field theory to calculate the two-body decay rate $\Gamma({}^{3}_{\Lambda}$ H $\rightarrow {}^{3}$ He $+ \pi^{-}$). We found significant but opposing contributions arising from ΣNN admixtures in ${}^{3}_{\Lambda}$ H and from $\pi^{-} - {}^{3}$ He final-state interaction, as well as substantial theoretical uncertainties attributed to (hyper)nuclear structure uncertainties. To derive $\tau({}^{3}_{\Lambda}$ H), we evaluated the inclusive π^{-} decay rate $\Gamma_{\pi^{-}}({}^{3}_{\Lambda}$ H) by using the measured branching ratio $\Gamma({}^{3}_{\Lambda}$ H $\rightarrow {}^{3}$ He $+ \pi^{-})/\Gamma_{\pi^{-}}({}^{3}_{\Lambda}$ H) and added the π^{0} contributions through the $\Delta I = \frac{1}{2}$ rule. The resulting $\tau({}^{3}_{\Lambda}$ H) varies strongly with the rather poorly known Λ separation energy $E_{sep}({}^{3}_{\Lambda}$ H) and it is possible to associate each one of the distinct RHI $\tau({}^{3}_{\Lambda}$ H) measurements with its own underlying value of $E_{sep}({}^{3}_{\Lambda}$ H).

[1] A. Pérez-Obiol, D. Gazda, E. Friedman, A. Gal, *Revisiting the hypertriton lifetime puzzle*, Phys. Lett. B 811, 135916 (2020).

Primary author: GAZDA, Daniel (Nuclear Physics Institute CAS, Rez)

Co-authors: GAL, Avraham (Racah Institute of Physics, The Hebrew University); FRIEDMAN, E. (Racah Institute of Physics, The Hebrew University); PÉREZ-OBIOL, Axel (Barcelona Supercomputing Center)

Presenter: GAZDA, Daniel (Nuclear Physics Institute CAS, Rez)

Session Classification: 1; Mon-II