Contribution ID: 115

Type: online poster

Experimental study of KNN and future experiments for kaonic nuclei

Thursday 30 June 2022 08:55 (25 minutes)

The existence of a quasi-bound state of antikaon and nucleus, kaonic nucleus, has been discussed ever since the $\bar{K}N$ interaction in I = 0 channel was confirmed to be strong attractive.

The $\bar{K}NN$ quasi-bound state is the lightest kaonic nucleus which is considered to be I = 1/2 and $J^{\pi} = 0^-$. To search for the $I_z = +1/2 \bar{K}NN$ state we conducted the J-PARC E15 experiment using the in-flight K^- -beam at J-PARC. Because the K^- -beam momentum of 1 GeV/c used in the experiment maximizes the elementary cross section of nucleon knocked-out reactions, (K^-, N) , the $I_z = +1/2 \bar{K}NN$ state is expected to be produced by sequential reaction of the primary (K^-, n) reaction followed by an absorption process of intermediate \bar{K} to residual nucleons. Production of the $I_z = +1/2 \bar{K}NN$ state was examined by an exclusive analysis for the simplest non-mesonic reaction, K^{-3} He $\rightarrow \Lambda pn$, in which Λp pair is expected to be decay products of the $\bar{K}NN$.In the Λp invariant-mass spectrum, we observed a distinct peak at the energy region below the $\bar{K}NN$ mass threshold. Because its peak position does not depend on the momentum transfer to the Λp system, the peak is produced by a resonance. Although the spectral decomposition was performed using the simple Breite-Wigner formula, whole distribution is reproduced well. The evaluated mass position and decay width are consistent with theoretical predictions, thus we concluded that the observed peak is a signal of the $I_z = +1/2 \bar{K}NN$ state.

As future prospects, there are two approaches to establish the kaonic nuclei more robustly. One is to search for heavier kaonic nuclei, and another is to study the observed $\bar{K}NN$ state more precisely. Thus, we have planed to perform series of experiments to study of kaonic nuclei using in-fight K^- reactions at J-PARC.

As an analogy to $\bar{K}NN$ production with the (K^-, n) reaction, heavier kaonic nuclei could be produced similarly by replacing ³He-target with heavier targets. As the first step to search for heavier kaonic nuclei, $\bar{K}NNN$ state will be searched for with the ⁴He (K^-, n) reaction. For the $\bar{K}NN$ state, determination of spin-parity is the most important to confirm the observed state is a quantum state as well as to clarify its internal structure. J^{π} of the $\bar{K}NN$ can be determine from the spin-spin correlation of the Λp -pair from the $\bar{K}NN$ decay with a model independent manner.

As another measurement for the $\bar{K}NN$, we will measure the ${}^{3}\text{He}(K^{-}, p)\Lambda n$ reaction to search for the $I_{z} = -1/2 \ \bar{K}NN$ state.

To perform these measurements, we will construct a new solenoid spectrometer system to have neutron detection capability and a proton polarimeter system.

I would like to present the summary of J-PARC E15 experiment and an overview of our future plan.

Primary author: YAMAGA, Takumi (RIKEN) Presenter: YAMAGA, Takumi (RIKEN) Session Classification: 4; Thu-I