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: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the
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Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data

CðQÞ¼N
!
1þλ

"
−1

2
expð−r20Q2Þþ1

4

jfðkÞj2

r20

"
1− 1

2
ffiffiffi
π

p d0
r0

$

þRefðkÞffiffiffi
π

p
r0

F1ðQr0Þ−
ImfðkÞ
2r0

F2ðQr0Þ
$

þares expð−r2resQ2Þ
%
; ð4Þ

where k ¼ Q=2, F1ðzÞ ¼
R
1
0 ex

2−z2=zdx and F2ðzÞ ¼
ð1 − e−z

2Þ=z in Eq. (4). The scattering amplitude is
given by

fðkÞ ¼
"
1

f0
þ 1

2
d0k2 − ik

$−1
; ð5Þ

where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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Experimental data in various sectors 

Hadron correlation in high energy nuclear collision

• pϕ

• K±p
• ΛΛ

4 ALICE Collaboration / Physics Letters B 797 (2019) 134822

Fig. 1. Results for the fit of the pp data at √s = 13 TeV. The p–p correlation function (left panel) is fitted with CATS (blue line) and the !–! correlation function (right 
panel) is fitted with the Lednický model (yellow line). The dashed line represents the linear baseline from Eq. (5), while the dark dashed-dotted line on top of the !–! data 
shows the expected correlation based on quantum statistics alone, in case of a strong interaction potential compatible with zero.

only significant contribution is p–!→p–p, where the p–! inter-
action is modeled using the scattering parameters from a next-to-
leading order (NLO) χEFT calculation [41] and the corresponding 
correlation function is computed using the Lednický model. The 
remaining residuals are considered flat, apart from p–#−→p–!, 
p–$0 →p–! and p–#(1530)− →p–#− , where the interaction can 
be modeled. For the p–#− interaction a recent lattice QCD poten-
tial, from the HAL QCD collaboration [42,43], is used. The p–$0 is 
modeled as in [44], while p–#(1530)− is evaluated by taking only 
the Coulomb interaction into account.

After all corrections have been applied to Ctot(k∗), the final fit 
function is obtained by multiplying it with a linear baseline (a +
bk∗) describing the normalization and non-femtoscopy background 
[25]

Cfit(k
∗) = (a + bk∗)Ctot(k∗). (5)

Fig. 1 shows an example of the p–p and !–! correlation func-
tions measured in pp collisions at 

√
s = 13 TeV, together with 

the fit functions. The p–p experimental data show a flat behav-
ior in the range 200 < k∗ < 400 MeV/c, thus by default the slope 
of the baseline is assumed to be zero (b = 0) and the corre-
lation is fitted in the range k∗ < 375 MeV/c. The resulting r0
values are 1.182 ± 0.008(stat)+0.005

−0.002(syst) fm in pp collisions at √
s = 13 TeV and 1.427 ± 0.007(stat)+0.001

−0.014(syst) fm in p–Pb colli-
sions at √sNN = 5.02 TeV. In pp collisions at 

√
s = 7 TeV the source 

size is r0 = 1.125 ± 0.018(stat)+0.058
−0.035(syst) fm [25].

The systematic uncertainties of the radius r0 are evaluated fol-
lowing the prescription established during the analysis of pp col-
lisions at 

√
s =7 TeV [25]. The upper limit of the fit range for the 

p–p pairs is varied within k∗ ∈ {350, 375, 400} MeV/c and the in-
put to the λ parameters is modified by 20%, keeping primary and 
secondary fractions constant.

Two further systematic variations are performed for the p–p 
correlation. The first concerns the possible effect of non-femto-
scopy contributions to the correlation functions, which can be 
modeled by a linear baseline (see Eq. (5)) with the inclusion of 
b as a free fit parameter. The final systematic variation is to model 
the p–! feed-down contribution by using a leading-order (LO) [41,
45] computation to model the interaction. The effect of the latter 
is negligible, as the transformation to the p–p system smears the 
differences observed in the pure p–! correlation function out.

To investigate the !–! interaction the source sizes are fixed to 
the above results and the !–! correlations from all three data 
sets are fitted simultaneously in order to extract the scattering 

parameters. The correlation functions show a slight non-flat be-
havior at large k∗ , especially for the pp collisions at 

√
s = 13 TeV 

(right panel in Fig. 1). Thus the fit is performed by allowing a non-
zero slope parameter b (see Eq. (5)). The fit range is extended to 
k∗ < 460 MeV/c in order to better constrain the linear baseline. 
Due to the small primary λ parameters (see Table 1) the !–! cor-
relation signal is quite weak and the fit shows a slight systematic 
enhancement compared to the expected Ctot(k∗) due to quantum 
statistics only, suggestive of an attractive interaction. However, the 
current statistical uncertainties do not allow the !–! scattering 
parameters to be extracted from the fit. Therefore, an alternative 
approach to study the !–! interaction will be presented in the 
next section. Systematic uncertainties related to the !–! emission 
source may arise from several different effects, which are discussed 
in the rest of this section.

Previous studies have revealed that the emission source can be 
elongated along some of the spatial directions and have a mul-
tiplicity or mT dependence [46,47]. In the present analysis it is 
assumed that the correlation function can be modeled by an ef-
fective Gaussian source. The validity of this statement is verified 
by a simple toy Monte Carlo, in which a data-driven multiplicity 
dependence is introduced into the source function and the result-
ing theoretical p–p correlation function computed with CATS. The 
deviations between this result and a correlation function obtained 
with an effective Gaussian source profile are negligible.

Possible differences in the effective emitting sources of p–p and 
!–! pairs due to the strong decays of broad resonances and mT
scaling are evaluated via simulations and estimated to have at 
most a 5% effect on the effective source size r0. This is taken into 
account by including an additional systematic uncertainty on the 
r!–! value extracted from the fit to the p–p correlation.

4. Results

In order to extract the !–! scattering parameters, the correla-
tion functions measured in pp collisions at 

√
s =7, 13 TeV as well 

as in p–Pb collisions at √sNN = 5.02 TeV are fitted simultaneously. 
The right panel in Fig. 1 shows the !–! correlation function ob-
tained in pp collisions at 

√
s = 13 TeV together with the result 

from the fit.
Since the uncertainties of the scattering parameters are large, 

different model predictions are tested on the basis of their agree-
ment with the measured correlation functions.

One option is to use a local potential and obtain C(k∗) based 
on the exact solution from CATS, with the source size fixed to the 
value obtained from the fit to the p–p correlations. Many of the 

• pΩ
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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including signal and background, and the black dotted line the background 
alone. The contamination from misidentification is ≤5%.
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Fig. 3 | Experimental p–Ξ− and p–Ω− correlation functions. a, b, Measured  
p–Ξ− (a) and p–Ω− (b) correlation functions in high multiplicity p–p collisions at 

s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

ALICE : PRL 127 (2021) 17, 172301 pp

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3

p+ K⊕p −K

(syst) fm
 1.25−

 0.51+ 0.23(stat)± = 8.9 KpR

5%−0

 = 5.02 TeVNNsPb − PbALICE

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

p− K⊕p +K

 

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 1.09−

 0.30+ 0.26(stat)± = 8.1 KpR

10%−5

Kyoto model

L-L fit

2c 0.03 GeV/± = 0.92 〉Tm〈

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.59−

 0.50+ 0.24(stat)± = 6.9 KpR

20%−10

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.86−

 0.23+ 0.13(stat)± = 6.4 KpR

30%−20

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.52−

 0.19+ 0.11(stat)± = 5.2 KpR

40%−30

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.48−

 0.22+ 0.14(stat)± = 4.9 KpR

50%−40

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

/ndf2χ
Kyoto: 589/210 = 2.8

L-L: 297/210 = 1.4

Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm

6

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3

p+ K⊕p −K

(syst) fm
 1.25−

 0.51+ 0.23(stat)± = 8.9 KpR

5%−0

 = 5.02 TeVNNsPb − PbALICE

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

p− K⊕p +K

 

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 1.09−

 0.30+ 0.26(stat)± = 8.1 KpR

10%−5

Kyoto model

L-L fit

2c 0.03 GeV/± = 0.92 〉Tm〈

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.59−

 0.50+ 0.24(stat)± = 6.9 KpR

20%−10

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.86−

 0.23+ 0.13(stat)± = 6.4 KpR

30%−20

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.52−

 0.19+ 0.11(stat)± = 5.2 KpR

40%−30

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.48−

 0.22+ 0.14(stat)± = 4.9 KpR

50%−40

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

/ndf2χ
Kyoto: 589/210 = 2.8

L-L: 297/210 = 1.4

Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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selection criteria of protons and kaons as well as the lower
limit of the sphericity. These variations are chosen such that
any combination leads to a maximum change of !20% of
Nsame within k" < 200 MeV=c in order to retain the
statistical significance. Systematic uncertainties associated
with the background description are evaluated by varying
the fit ranges and the order of the polynomial assumed for
Cbaselineðk"Þ. Uncertainties related to the unfolding are
accounted for according to Ref. [38]. This results in a
relative systematic uncertainty at low k" of 2.8%.
In correlation measurements, the detected pairs are

emitted in the final state of the scattering processes. The
correlation function of the sample is then sensitive to elastic
and inelastic channels produced in the collision [58].
Inelastic channels opening below threshold act as an
effective increase of the correlation function. The relevant
channels for the p-ϕ system, Λ-K and Σ-K are located
substantially below threshold. Channels appearing above
threshold lead to a cusp structure in Cðk"Þ in the vicinity of
the threshold. Because of the large uncertainties and the
broad bin width, no such structures are observed at the
opening of the Λ-K" (k" ¼ 221.6 MeV=c) and Σ-K"

(k" ¼ 357.4 MeV=c) thresholds.
In order to interpret the measured genuine p-ϕ correla-

tion one has to consider that the p-ϕ interaction features
one isospin and two spin configurations. Since the latter
cannot be disentangled, spin-averaged results are pre-
sented. The strong p-ϕ interaction is modeled employing
the Lednický-Lyuboshits approach [57]. Coupled channel
effects are incorporated via an imaginary contribution to the
scattering length. For large values of d0, the term ∝ d0=r0
that corrects the asymptotic wave function for small sources
has an impact on the modeled correlation function [34].
Additionally, in line with studies of charmonium states
[23,59], phenomenological potentials are employed to

model the p-ϕ interaction [24], including Yukawa-
type, VYukawaðrÞ ¼ −A × r−1 × e−α×r, and Gaussian-type
VGaussianðrÞ ¼ −Veff × e−μ×r

2
potentials. The correlation

functions based on these potentials are obtained with the
correlation analysis tool using the Schrödinger equation
(CATS) [60].
The particle-emitting source is extracted from studies of

p-p and p-Λ pairs [33], which demonstrated that by
accounting for the effect of strong resonances feeding to
the particle pair of interest, a common source for both pairs is
found. The primordial source depends on the transverse
massmT of the particle pair and is obtained by evaluating the
core radius at the hmTi ¼ 1.66 GeV=c2 of the p-ϕ pairs.
The strong decays feeding to protons are explicitly consid-
ered [33], while for the ϕ a 100% primordial fraction is
assumed [14]. The resulting source function is parametrized
by a Gaussian profile with reff ¼ ð1.08! 0.05Þ fm.
The interaction parameters are extracted by fitting the

genuine p-ϕ correlation function Cp-ϕðk"Þ with the respec-
tive model within k" < 200 MeV=c. The systematic uncer-
tainties of the procedure are assessed by varying the upper
limit of the fit range by !30 MeV=c and the source radius
within its uncertainties.
The real and imaginary parts of the scattering length

obtained from the Lednický-Lyuboshits fit are ℜðf0Þ ¼
0.85! 0.34ðstatÞ ! 0.14ðsystÞ fm and ℑðf0Þ ¼ 0.16!
0.10ðstatÞ ! 0.09ðsystÞ fm. The resulting effective range
is d0 ¼ 7.85! 1.54ðstatÞ ! 0.26ðsystÞ fm. ℜðf0Þ deviates
by 2.3σ from zero, indicating the attractiveness of the p-ϕ
interaction in the approximate vacuum of pp collisions.
Notably, ℑðf0Þ vanishes within uncertainties, indicating
that inelastic processes do not play a prominent role in the
interaction. Instead, the elastic p-ϕ interaction appears to
be dominant in vacuum. The scattering length is larger than
values found in literature: a recent analysis of data recorded
with the CLAS experiment reports jf0j ¼ ð0.063!
0.010Þ fm [61]; a value of around f0 ¼ 0.15 fm is con-
sistent with LEPS measurements of the ϕ cross section
[62,63]; studies of an effective Lagrangian combining
chiral SU(3) dynamics with vector meson dominance
obtain f0 ¼ ð−0.01þ i0.08Þ fm [64]; and a QCD sum
rule analysis finds f0 ¼ ð−0.15! 0.02Þ fm [65]. The
obtained scattering lengths are rather model dependent
since the data refer to the properties of the ϕmeson inside a
nucleus and not to a two-body system as in this work. This
underlines the importance of direct measurements of the
two-body N-ϕ interaction to provide constraints for theo-
retical models.
Finally, the data are employed to constrain the param-

eters of phenomenological Gaussian- and Yukawa-type
potentials. As the imaginary contribution of the scattering
length is consistent with zero, only real values are used for
the parameters. The fits yield a comparable degree of
consistency as the fit with the Lednický-Lyuboshits
approach. The resulting values for the Gaussian-type
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FIG. 2. The genuine p-ϕ correlation function Cp-ϕðk"Þ with
statistical (bars) and systematic uncertainties (boxes). The red
band depicts the results from the fit employing the Lednický-
Lyuboshits approach [57]. The width corresponds to one standard
deviation of the uncertainty of the fit.
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 

STAR AuAu
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Simple model: Lednicky-Lyuboshits (LL) formula

Y. Kamiya, K. Sasaki, T. Fukui, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
Phys.Rev.C 105 (2022) 1, 014915

Hadron correlation in high energy nuclear collision

• Gaussian source with radius  
•   with scat. length 

R
ℱ(q) = [−1/a0 − iq]−1 a0

3
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

Bound state 
or repulsive  
 ( )a0 > 0

Attractive  

No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

• Clear relation between  and interaction 

• Sensitive to (non)existence of bound state
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Simple model: Lednicky-Lyuboshits (LL) formula

Hadron correlation in high energy nuclear collision

• Gaussian source with radius  
•   with scat. length 

R
ℱ(q) = [−1/a0 − iq]−1 a0
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful
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Attractive  

No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2
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• Sensitive to (non)existence of bound state
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Coulomb interaction with LL formula + Gamow correction
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LL model, re↵ = 0

⌘(x, y) = �↵|µya0|/x
with µa0 = �3.32

Corr. func. with Gamow factor

• w/o Coulomb interaction • w/ Coulomb interaction (attractive case)
• Coulomb int. with Gamow factor
• Coulomb attractive case (for )pΞ−

• Low energy region: Coulomb effect dominant 
• Stonrong int. effect: found as deviation from pure Coulomb case  
• Bound state signal : Suppression ==> Dip structure (attractive case )

Add Coulomb int.

A(q) =
2πη(q)

exp(2πη(q)) − 1

η(q) = μα /q

× A(q)

• Only with strong int. 

Coulomb interaction

Y. Kamiya, K. Sasaki, T. Fukui, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
Phys.Rev.C 105 (2022) 1, 014915
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Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula
S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
R. Lednicky, et.al. Phys. At. Nucl. 61(1998) 

• Contribution from coupled-channel source 

C(q) = ∫ d3r S(r) |ψ (−)(q; r) |2 + ∑
j≠i

ωj ∫ d3r Sj(r) |ψ (−)
j (q; r) |2

Contribution from Coupled-
channel Source

Coupled-channel effect

, , , , , K−p K̄0n π0Σ0 π+Σ− π−Σ+ π0Λ

K−

p
CK−p

FSI

• Enhance  
• Enhance cusp structure   
•  : production rate  
         (compared to measured channel)

C(q)

ωi

• | | < 1  —> Decrease the correlation 
• At channel threshold —> Cusp structure 
• : obtained by solving the c.c. Schrödinger eq.   

Sij

ψi

(out-going wave) +  (incoming wave ) ψi → S†
• Coupled-channel wave function

In the non-interacting limit, where the every interaction is switched off, the ψ(r) reduces to j0(qr) and
C(q) goes to unity for every momentum.

When both of the observed particles are charged, the relative wave function is also modified by
the Coulomb interaction. Because of this long range interaction, the modification of the higher partial
waves (l ≥ 1) is not negligible. The asymptotic wave function is no longer written by the plain wave
exp(+iqi ·r) but by the Coulomb wave function ψC(r, q). The relative wave function including Coulomb
effect is written as

ϕC,(−)(r, q) = ψC(r, q)− ψC
0 (qr) + ψ(q, r), (10)

where ψC
0 is the s-wave component of Coulomb wave function ψC . By switching off the Coulomb in-

teraction, ψC and ψC
0 reduce to plain wave exp(+iq · r) and j0(qr), respectively. The scattering wave

function ψ(qr) satisfies the Coulomb outgoing boundary condition as follows. The s-wave asymptotic
wave function can be written with the superposition of the regular solution F (qr) and irregular solution
G(qr) as

ψ(q, r) → c1
qr

F (qr) +
c2
qr

G(qr) (11)

With these two solutions, the Coulomb incoming (outgoing) wave uC(−)(q, r) (uC(+)(q, r)) are expressed
as [29]

uC(−)(q, r) = −eiσ(iF (qr)−G(qr)), (12)

uC(+)(q, r) = e−iσ(iF (qr) +G(qr)), (13)

where σ = argΓ(1 + iη) is s-wave Coulomb phase shift with Sommerfeld parameter η = µα/q. In the
limit of switching off the Coulomb force α → 0, these reduce to the plain wave; uC(±)(q, r) → e±iqr.
Using these Coulomb incoming and outgoing wave, the asymptotic wave function is written as

ψ(q, r) → aC

2iqr
uC(+)(q, r) +

bC

2iqr
uC(−)(q, r). (14)

The Coulomb outgoing boundary condition, that ψ(q, r) in Eq. (10) must satisfy, is given as |aC | = 1.
Employing Eq. (10), the correlation function including the Coulomb effect is written as

C(q) =

∫
d3rS(r)

[
|ψC(qr, q)|2 − |ψC

0 (q, r)|2 + |ψC(r)|2
]
. (15)

Due to the presence of the Coulomb interaction, the correlation function differs from unity even in the
limit of switching off the strong interaction.

When the coupling between the observed channel (denoted as channel 1 in the following) and other
channels is not negligible, the coupled channel effect to the correlation function must be taken into
account. The modified Koonin-Platt formula for the coupled channel problem is obtained in Ref. [30] as

C1(q) =
n∑

i=1

ωi

∫
drSi(r)|Φ(−)

i (q1, r)|2, (16)

where Si(r) and ωi are the relative source function and the weight of channel i, respectively. Φ(−)
i (q1, r) is

the i-th component of coupled channel wave function. Assuming the absence of the Coulomb interaction
for every coupled channel, the Φ(−)(q1, r) is written in the form of

Φ(−)(q1, r) = e+iq1·re1 − j0(q1r)e1 +Ψ(q1, r), (17)

where ei is the unit vector of channel i and Ψ(q1, r) is the s-wave scattering wave function satisfying the
coupled channel Schrödinger equation;





− ∇2

2µ1
+ V11(r) V12(r) · · · V1n(r)

V21(r) − ∇2

2µ2
+ V22(r) +∆2 · · · V2n(r)

...
...

. . .
...

Vn1(r) Vn2(r) · · · − ∇2

2µn
+ Vnn(r) +∆n




Ψ(q1, r) = EΨ(q1, r), (18)

E =
q21
2µ1

, Ψ(q1, r) =
t (ψ1(q1, r),ψ2(q2, r), · · · ,ψn(qn, r)) , (19)

3

Vij = V strong
ij ( +VCoulomb)  ; threshold energy diff.Δi
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Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula
S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
R. Lednicky, et.al. Phys. At. Nucl. 61(1998) 

Coupled-channel effect

•  and   source gives sizable enhancement 
•  coupling is negligible
K̄0n πΣ
πΛ

 thresholdK̄0n
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FIG. 1. The modulus square of each component of the coupled-
channels wave function with q = 30 MeV/c. The solid, dashed,
dotted, and dash-dotted lines denote the K�p, K̄0n, ⇡⌃, and ⇡0⇤
component. The ⇡⌃ component is the sum of three components,
⇡�⌃+, ⇡0⌃0 and ⇡+⌃�.

can be written as

C(q) =

Z
d3r S1(r)

⇥
|�C(q; r)|2 � |�C0 (qr)|2

⇤

+ 4⇡
X

j

Z 1

0
dr r2 !jSj(r)| (�)

j (q; r)|2 , (5)

where the left-hand side depends only on q = |q| after the
angular integration. The normalization of the source function
implies that the weight of the observed channel must be unity:
!1 = 1 [20]. Note that the first line in Eq. (5) is independent
of the strong interaction while the second line represents the
strong interaction and coupled-channels effects.

The K�p correlation function was calculated in Ref. [7] us-
ing the effective K̄N potential in Ref. [25] within the model
space of K�p and K̄0n channels. Although the effects of
the coupled ⇡⌃ and ⇡⇤ channels are implicitly included in
the renormalized K̄N potential to reproduce the scattering
amplitude, the proper boundary condition (4) was not im-
posed because the wave function does not have explicit ⇡⌃
and ⇡⇤ components. The present calculation reduces to that
in Ref. [7] when the channel couplings of K̄N $ ⇡⌃,⇡⇤
are switched off. It turns out, however, that there are sizable
deviations of the present results from those in Ref. [7]. This
indicates the importance of an explicit treatment of coupled
channels in the K�p correlation function.

We now focus on the wave functions in the full K̄N -⇡⌃-
⇡⇤ coupled-channels framework. The starting point is chiral
SU(3) dynamics at next-to-leading order [22] which success-
fully describes the set of existing K�p scattering data together
with the SIDDHARTA kaonic hydrogen data [4]. An equiv-
alent local K̄N -⇡⌃-⇡⇤ coupled-channels potential has been
constructed to reproduce the corresponding scattering ampli-
tudes [21]. Figure 1 shows the modulus-squared wave func-
tions | (�)

j |2 with j = K�p, K̄0n,⇡⌃ and ⇡0⇤, applying
the K�p outgoing boundary condition at q = 30 MeV/c.
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FIG. 2. K�p correlation function with R = 1 fm (upper panel) and
R = 3 fm (lower panel). The long-dashed line denotes the result
with K�p component only. The dashed, dotted, and solid lines show
the results in which the contributions from K̄0n, K̄0n and ⇡⌃, and
from all coupled-channel components are added, respectively.

The squared ⇡⌃ wave function represents the sum of ⇡�⌃+,
⇡0⌃0 and ⇡+⌃� components. We find that the wave func-
tions in channels other than K�p have a sizable magnitude at
small distances, while they are much smaller than that of K�p
at large distances. From this figure we conclude that contri-
butions from non-K�p components to the K�p correlation
function are large for small-size sources, while the K�p com-
ponent dominates for large sources. Note that the coupled-
channels effects contribute to the correlation function through
the wave functions  (�)

j as well as  (�)
K�p. This is because

 (�)
K�p itself is affected by the coupling to the other channels.
Results: The K�p correlation function and its break-

down into channels is shown in Fig. 2 for source sizes of
R = 1 fm and 3 fm. We assume a common source func-
tion of Gaussian shape for all channels, Sj(r) = SR(r) ⌘
exp(�r2/4R2)/(4⇡R2)3/2 with !j = 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta and the cusp structure
at the K̄0n threshold at q ' 58 MeV/c. Among the coupled-
channel components, the enhancement by the K̄0n channel is
found to be the largest, and next in importance is ⇡⌃. The in-
clusion of the K̄0n component also makes the cusp structure

K̄0n

πΣ
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Source size dependence of coupled-channel effect 
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• Less prominent cusp structure 
• Weaker coupled-channel source contribution

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
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where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics <—  ,  fitted 

• Coupled-channel, energy dependent as 

aK−p
0 σ

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)
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experiment of Kaonic hydrogen 
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0
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• two pole structure

•  molecular picture (high-mass pole)K̄N
 J. A. Oller and U. G. Meißner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).
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44 Y. Kamiya et al. / Nuclear Physics A 954 (2016) 41–57

Fig. 1. Absolute value of the I = 0 combination of the K̄N scattering amplitude |f (I=0)(z)| defined in Eq. (6) from the 
NLO approach in Refs. [24,25] in the complex energy z plane. At each Re z, we choose the Riemann sheet which is most 
adjacent to the real axis.

While the gross features of the !(1405) in the K̄N amplitude are already well described just 
by the Weinberg–Tomozawa term, higher order contributions [9,12] can be used to quantitatively 
improve the description. To determine the low-energy constants in the higher order terms, suffi-
ciently many precise experimental data are necessary. In 2004, the DEAR collaboration reported 
measurements of kaonic hydrogen [26] from which the K−p scattering length can be deduced 
(see the next section). Systematic studies with the NLO interactions however pointed out an 
inconsistency of the DEAR result with the scattering data [27–30].

2.2. NLO analysis with precise kaonic hydrogen data

An experimental breakthrough came in 2011 when the SIDDHARTA collaboration provided 
a new measurement of the shift "E and width # of the 1s level of kaonic hydrogen [31,32]:

"E = 283 ± 36(stat) ± 6(syst) eV, # = 541 ± 89(stat) ± 22(syst) eV. (4)

Kaonic hydrogen is the Coulombic bound state of the K−p system. The 1s energy shift and width 
are induced by the strong interaction. In the non-relativistic effective Lagrangian approach, this 
shift and width are related to the K−p scattering length aK−p as [33]

"E − i#/2 = −2α3 µ2
r aK−p

[
1 + 2α µr (1 − lnα) aK−p

]
, (5)

where α is the fine-structure constant and µr = mK−Mp/(mK− +Mp) is the K−p reduced mass. 
Thus the kaonic hydrogen measurement (4) provides a direct constraint on the K̄N scattering 
amplitude at threshold. We note that the formula (5) can be further improved by summing up the 
logarithmically enhanced terms, as discussed in Ref. [34]. See also the estimation of the validity 
of the formula (5) based on explicit calculations within potential models [35,36].

The first systematic NLO analysis including the SIDDHARTA constraint has been performed 
in Refs. [24,25]. Here we focus on the results of Refs. [24,25], and the comparison with other 
approaches will be discussed in the next section. The data base used in this analysis consists 
of the K−p total cross sections, the threshold branching ratios, and the K−p scattering length 
deduced from the SIDDHARTA data. We obtain a best fit result in the full NLO approach with 
χ2/d.o.f. = 0.96, showing that the new measurement of kaonic hydrogen is now consistent with 
the scattering data. The same analysis can be performed with only the Weinberg–Tomozawa term. 
A reasonable fit is found with χ2/d.o.f. = 1.12, provided that some of the subtraction constants 

N

K̄

ℱK̄N

 J. A. Oller and U. G. Meißner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).



17

Source size dependence with  dataK−p

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm

6

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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 interaction and  correlationK̄N K−pCoulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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Figure 3: Left: scattering parameters obtained from the Lednický–Lyuboshitz fit compared with available world
data and theoretical calculations. Statistical uncertainties are represented as bars and systematic uncertainties, if
provided, as boxes. Right: experimental femtoscopic correlation function for K�p�K+p pairs in the 30–40%
centrality interval, together with various Lednický–Lyuboshitz calculations obtained using the scattering length
parameters from Refs. [17, 18, 71–75] and the source radius from this analysis. The statistical and systematic
uncertainties of the measured data points are added in quadrature and shown as vertical bars.

and ¡ f0 = 0.92± 0.05(stat)+0.12
�0.33(syst) fm.

The obtained parameters of the scattering length are compared with the available experimental values as
well as model calculations [18, 71–75] in the left panel of Fig. 3. Numerical values of those parameters
are also provided in Tab. 1. The ALICE results are compatible with them within uncertainties2. Up until
this point, the world’s best experimental data on Kp scattering are mainly from exotic kaonic atoms,
where the interaction at the threshold is measured, and from scattering experiments. Theory predictions
and calculations are based on cEFT models.

Moreover, the Lednický–Lyuboshitz formalism is also used to compute femtoscopic correlation functions
using scattering length parameters from previous measurements and theory predictions. They are then
compared with the experimental data and the deviations in units of c2/ndf are obtained. The result of
such a procedure is shown in Fig. 3 (right), while the c2/ndf values are presented in Table 1. The Kyoto
model, which captures well the structures related to coupled channels in pp collisions, reproduces the data
trends in all measured Pb–Pb centrality intervals, confirming that the coupled channels are fundamental
in the description of small sources but have a negligible influence on correlation functions at large source
sizes [39]. However, the model still requires further development as the resulting c2/ndf= 2.8 is slightly
worse than the best calculations using the Lednický–Lyuboshitz analytical approach.

2Note that systematic uncertainties are not provided for some of the older results.
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• Extraction of the  scattering length from correlation function K−p
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CHIRALLY MOTIVATED K̄N AMPLITUDES

A modern treatment of low-energy meson-baryon interactions is provided by approaches based on chiral perturbation
theory combined with coupled channel T-matrix re-summations techniques. The parameters of such models are fitted
to low energy K

�
p total cross sections, the threshold branching ratios (see e.g [? ] and to the strong-interaction

characteristics of the 1s level in kaonic hydrogen measured recently by the SIDDHARTA collaboration [4]. Several
theoretical groups presented models describing about equally well this set of experimental data. We refer to these
approaches as Kyoto-Munich (KM) [5], Prague (P) [6], Bonn (B2, B4) [7], Murcia (MI , MII) [8] and Barcelona
(BCN) [9], with some of them providing two solutions. The first four models are compared in [10].

In Fig. 1 we present the predictions of the models for K
�

p and K
�

n elastic amplitudes in the free space. Concerning
the K

�
p amplitude, all these state-of-the-art chiral models are in agreement in a region of energies at and above the

K
�

p threshold. The only exception is the Bonn approach due to different treatment of off-shell effects and partial
waves. The above models yield considerably different K

�
p amplitude below the threshold. On the other hand, for

the K
�

n amplitude the model variations are quite large over the whole energy region. The reason is that the I = 1
amplitudes, as well as the subthreshold K

�
p amplitudes, are not sufficiently restricted by the experimental data.

In nuclear matter the free-space K
�

N amplitudes are modified due to Pauli blocking and hadron self-energies,
the latter effectively modifying the in-medium hadron masses as well. It appears that for energies at least about
20 MeV below the K̄N threshold the main effect comes from the Pauli blocking and can be approximated by a simple
multiplication of the free-space K

�
N amplitudes by an energy and density dependent factor derived from considering
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�

n (bottom panels) elastic scattering amplitudes generated by recent chirally motivated
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green), P (dot-long-dashed, violet), BCN (dot-dot-dashed, brown), and KM (continuous, black). The thin vertical lines in the
panels mark the pertinent K
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N thresholds.
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Further constraint on  interaction?K̄N

• Can we constrain   interaction / amplitude from femtoscopy?K̄N I = 1

B2, B4: Mai, Meißner, EPJA 51 (2015) 

M1, MII: Guo, Oller, PRC 87 (2013) 

PNLO: Cieplý, Smejkal, NPA 881 (2012)

KMNLO: Ikeda, Hyodo Weise NPA 881 (2012)
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Figure 7: Scaling factor (a j) for K0n (black circles) and pS (red squares) extracted from the different fits of the
K�p correlation function as a function of the core radius rcore extracted for pp, p–Pb and Pb–Pb collisions. The
vertical error bars and boxes represent the statistical and systematic uncertainties on the extracted parameters,
respectively. The widths of the boxes represent the systematic uncertainty associated to each extracted rcore. The
black and red bands represent the uncertainty coming from the yield estimates in TF and the variations applied in
the BW kinematics summed in quadrature as described in the text for K0n and pS, respectively.

be equal to unity if the coupling strength is correctly estimated within the Kyoto model. From the fits to
the measured correlation functions with the state-of-the-art Kyoto model, calculated within the coupled
channel approach, it is possible to observe that the dynamics of the coupled channels is under control in
the case of pS, while the deviation from unity of aK0n indicates that the transition between the K�p and

the K0n channel, as currently implemented in the Kyoto model, is too weak. Hence, the data presented
in this work provide a unique constraint to pin down the coupling strength to the K0n channel.
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
p

sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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Figure 6: (K�p � K+p) correlation functions obtained in Pb–Pb collisions at
p

sNN = 5.02 TeV in the 60–70%
(left), 70–80% (middle) and 80–90% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
p

sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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ALICE Pb  
 0-20%

p

• Latest  correlation results K−p

• Pb  : 0-20%, 20-40% 40-100% 
• PbPb : 60-70%, 70-80% 80-90%

p

• Discrepancy around  threshold 
between chiral SU(3)  model and exp. data 
for small source data 

K̄0n

data
Theor.

• Analysis with scale factor αj

Detail —> Talk by R. Lea 9am on Thursday!  

• Scale the coupled-channel source contribution  
   by scaling factor

CK−p = Cel
K−p + ∑

j

αjCinel
j

•  ~ 2 gives better agreement αK̄0n

implying the stronger coupling
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 interaction from  correlation functionK̄N K0
S p

|K0
S p⟩ = [ | K̄0p⟩ − |K0p⟩]/ 2

KN, I = 0, 1K̄N, I = 1
CK0

S p = [CK̄0p + CK0p]/2

•  component only I = 1

re = − 0.06 + i0.20 fm

K. Aoki and D. Jido, PTEP (2019) Ikeda, Hyodo, Weise, NPA881 (2012)

• Well determined with scat. exp. 

• Chiral amplitude• Chiral amplitude
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Figure 1: Scattering amplitude of K̄0p diagonal component.

We show the scattering amplitude above the threshold in Fig. 1. Compared to the K−p channel, the
attraction is moderate but not so small. The large imaginary part indicates the coupling to the lower
channels is strong. The scattering length a0 and the effective range re of the K̄0p channel are obtained
as

a0 = −0.61− i0.78 fm, (6)

re = −0.06 + i0.20 fm, (7)

where the scattering length is defined as a0 = −F(E = Eth).
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Figure 2: K̄0p correlation function.

In Fig. 2, we show the K̄0p correlation function for the Gaussian source with radius R = 1 fm case.
We find that the K̄0p correlation function shows the strong enhancement at the low momentum region
due to the strong attraction. The πΣ source contribution gives the non-negligible enhancement to CK̄0p.
Note that here we have assumed ωi = 1 for every channels. In the actual cases, these weight factors of
πΣ and πΛ should be larger than unity, which leads the larger contribution of coupled channel source
compared to Fig. 2.

2

ωj = 1

The K0p correlation function is calculated using the KN effective potential as shown in Fig. 4. As
expected from the weakly repulsive K0p amplitude, the K0p correlation function shows weak suppression.
The K+n source contribution is very small due to the weak coupling. The difference between the two
models can be considered as the theoretical uncertainty of the chiral dynamics.
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Figure 4: K0p correlation function.

4 K0
sp correlation function

With the K0p and the K̄0p correlation function, the K0
sp correlation function is calculated with Eq. (1) as

shown in Fig. 5. Due to the strong enhancement of the CK̄0p at the low momentum, the K0
sp correlation

function also shows the enhancement.
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4

ωj = 1K0p

The K0p correlation function is calculated using the KN effective potential as shown in Fig. 4. As
expected from the weakly repulsive K0p amplitude, the K0p correlation function shows weak suppression.
The K+n source contribution is very small due to the weak coupling. The difference between the two
models can be considered as the theoretical uncertainty of the chiral dynamics.
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4 K0
sp correlation function

With the K0p and the K̄0p correlation function, the K0
sp correlation function is calculated with Eq. (1) as

shown in Fig. 5. Due to the strong enhancement of the CK̄0p at the low momentum, the K0
sp correlation

function also shows the enhancement.
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S p

K̄0p
• Enhancement by  is sizable.   

• Prediction for the future  data

K̄0p(K̄N I = 1)

K0p

Y. Kamiya, T. Hyodo, A. Ohnishi. in preparation

• Effective potential
Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Effective potential
Constructed from chiral amp.
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FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel aJ=0
0 [fm] aJ=1

0 [fm]
pΞ− −1.21± 0.12+0.08

−0.00 − i1.52± 0.34+0.16
−0.25 −0.35± 0.06+0.09

−0.06 − i0.00± 0.00+0.00
−0.00

nΞ0 −2.53± 0.62+0.36
−0.46 − i0.74± 0.43+0.12

−0.21 −0.28± 0.04+0.02
−0.05

ΛΛ −0.76± 0.22+0.00
−0.14 -

TABLE I. The scattering length of the ΛΛ, nΞ0, and pΞ− channel at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+−(syst. error). The error of ”0.00” denotes it is less than 5.0× 10−−3.

eigen-momenta of ΛΛ, nΞ0, and pΞ−, are +, −, and +, re-
spectively. The real part of this pole is just below the nΞ0

threshold by −3.93 MeV.3 Note that if the NΞ quasibound
state emerges, the pole must lie below nΞ0 threshold in the
(−,+,+) sheet, which is directly connected to physical scat-
tering energy. These near-threshold but in the irrelevant sheet
poles contribute to enhance the scattering length of the nΞ0

channel. Thus, considering the near-threshold virtual pole and
large absolute value of the nΞ0 scattering length, we can say
that the H dibaryon state is just barely unbound with the at-
tractive ΛΛ-NΞ interaction.4

3 See appendix for the relation between the attractive force and the virtual
pole position.

4 When the Coulomb potential is switched on, pΞ− atomic bound states
appear. The sizes of the atomic wave functions are much larger than the
source size, so the Coulomb attraction always contributes to enhance the
correlation function at small relative momenta in high-energy nuclear re-
actions.

III. CORRELATION FUNCTION FORMULA WITH
COUPLED-CHANNEL EFFECT

In high-energy heavy-ion collisions and high-multiplicity
events of pp and pA collisions, the hadron production yields
are well described by the statistical model so hadrons are con-
sidered to be produced independently. Under such conditions
the correlations between outgoing particles are generated by
the quantum mechanical scattering by the final state interac-
tion. We consider two particles, a and b, with relative mo-
mentum q = (mbpa − mapb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given as [40, 46]:

C(q) =

∫
d3r

∑

j

ωjSj(r)|Ψ(−)
j (q; r)|2 , (1)

where the wave functionΨ(−)
j in the jth channel is written as

a function of the relative coordinate r in that channel, with
outgoing boundary condition for the measured channel. Sj(r)
and ωj are the normalized source function and its weight in the
jth channel. Thus the correlation function contains informa-
tion of both the hadron source and the hadron-hadron interac-

• HAL QCD  coupled-channel potentialΛΛ-NΞ
K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

• Strong attraction in   channel J = 0, I = 0 NΞ

• Long history of discussion on  sector   
   related to ( )-dibaryon. 

(J, I) = (0,0)
H uuddss

R. L. Jaffe, PRL 38 (1977), 195. 

apΞ−(J=0)
0 = − 1.21 − i1.52

 dibaryon state is just barely unbound.H

Fate of -dibaryon?H

• Binding energy of double  hypernucleusΛ
 does NOT (deeply) bound ΛΛ

• -  coupled-channel system ΛΛ NΞ
Possibility of  quasiboundNΞ

pΞ−ΛΛ nΞ0

Re s

Takahashi et al., PRL87 (2001) 212502.
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Fig. 5.2. ⇤⇤ correlation function with the fss2 ⇤⇤ interaction [293,294], obtained by using the KP and LL formulae in comparison with data [22]. Left
panel shows the results without the feed-down correction and the residual correlations. Right panel shows the results with the feed-down and residual
source effects. The results in the fixed � case (� = (0.67)2) and the free � case are compared. Also shown in both panels are the results from the cylindrical
source including flow effects in the KP formula [36]. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

approach to the primary vertex. The long-lived resonance contribution from ⌃0 and a part of ⌅ is still supposed to reduce
the correlation strength via Eq. (5.31).

In Ref. [22], the datawere analyzedwithin the LLmodel Eq. (5.28)with an intercept parameter�. Furthermore, a Gaussian
term with two parameters taking account of the residual correlation at large q is included, although its origin has not been
understood. Therefore, a six-parameter fit to the data is made with

C(q) = N


1 + �

✓
�

1
2
e�4q2R2

+ �CLL(q)
◆

+ arese�4r2resq
2
�

(5.34)

where �CLL(q) is given by Eq. (5.28). Optimized parameters given in Ref. [22] are summarized in Table 5.1.
Although the quality of the fit is quite well (�2/Ndof ' 0.56), the obtained scattering length,1 a0 = 1.10 ± 0.37+0.68

�0.08 fm,
seems to conflict with the results from the observed double hypernucleus. Indeed, the ⇤⇤ bond energy in 6

⇤⇤He is found
to be �B⇤⇤ = B⇤⇤( 6

⇤⇤He) � 2B⇤(5⇤He) ' 1.01 MeV [38]. From �B⇤⇤( 6
⇤⇤He), the scattering length and the effective range

in the ⇤⇤1S0 channel are suggested as (a0, reff) = (�0.77 fm, 6.59 fm) [289] or (a0, reff) = (�0.575 fm, 6.45 fm) [290].
Recent update of the bond energy due to the update of the ⌅� mass [291] gives �B⇤⇤( 6

⇤⇤He) = 0.67 ± 0.17 MeV [79],
which suggests (a0, reff) = (�0.44 fm, 10.1 fm) [292].

A detailed investigation of the ⇤⇤ correlation function by making use of the KP formula Eq. (5.7) with various ⇤⇤ inter-
action potentials and source functions including collective expansion in both longitudinal and transverse directions has been
carried out in Ref. [36], It was found that after taking into account the correction of electromagnetic decays from ⌃0, the
scattering length is found to be consistentwith the double hypernuclei. The detailed comparison of themethods is discussed
in Ref. [35], which concludes that it is crucial to determine the value of �. Here we briefly outline the above points.

First, we clarify the difference between the C(q) obtained from the LL formula Eq. (5.28) and the KP formula Eq. (5.7).
In the left panel of Fig. 5.2, C(q) with the fss2 ⇤⇤ interaction is displayed. The corresponding values a0 = �0.81 fm and
reff = 3.99 fm are used as inputs for the LL formula. The difference between the two is small, thus confirming previous
studies [276] that indicate insensitivity of the correlation to the detailed shape of the wave function within the interaction
range. The difference of C(q) between the static spherical source (thin red, circles) and the expanding source (thin green,
triangles) indicates the effect of the collective expansion. The existence of the fast boost-invariant longitudinal expansion
deforms the source function such that the correlation function takes a different shape in the best fit to the data [36]. Note
that such a difference does not take place in the case of non-identical pairs; as seen in Eqs. (5.16) and (5.18), the quantum
statistics effect makes C(q) more sensitive to the source shape through the Fourier transformation.

Second, we estimate the contribution to N⇤
tot with the help of the statistical model and experimental data, to correct the

data for the long-lived resonance decay via Eqs. (5.30) and (5.31). Here⌃0 and⌅ are treated as long-lived resonances, since
other decay parents have much shorter lifetime thus only change the effective source size or have a negligible contribution.
Adopting data from p + Be collisions at plab = 28.5 GeV [295], we take N⌃0/N⇤ = 0.278, which is also consistent with
thermal model calculations. Taking into account the fact that the ⌅ yield in Au+Au collisions at

p
sNN = 200 GeV has been

shown to be 15% of total ⇤ [296] and the STAR candidate selection with the distance of closest approach less than 0.4 cm
may exclude a part of ⌅ decay contributions to ⇤, we estimate � = (0.67)2. If we take account of the ⌅ contribution into

1 The opposite sign convention of the scattering length is adopted in Ref. [22].

K. Morita, T. Furumoto, and A. Ohnishi, PRC91(2015)

CΛΛ
• STAR  correlation ΛΛ

L. Adamczyk et al. [STAR]  PRL 114 (2015).

weak  interaction ΛΛ



-  interaction and 
 and  correlation function
ΛΛ NΞ

ΛΛ pΞ−

 correlation functionΛΛ

S. Acharya et al. [ALICE], PLB 797 (2019).

Quantum statistics 
(QS) for octet-octet 

• ALICE Pb,  collisions datap pp

•  cusps related to the coupling and  
  existence of H-dibaryon 

NΞ

J. Haidenbauer, Nucl. Phys. A 981 (2019), 

Almost invisible due to small coupling

Weak attraction of  confirmed  
There is no signal of H-dibaryon 

ΛΛ

+
1
2 ∑

j

ωj ∫ d3rSj(r)[ |ψj,s(r) |2 − | j0(r) |2 δj1]

CΛΛ = 1 −
1
2

e−4q2R2

8

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

p⌅� (corrected)

C
p⌅

�

q [MeV/c]

HALQCD with R = 1.05 fm

pure Coulomb with R = 1.05 fm

ALICE pp 13 TeV (corrected)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 100 200 300 400 500

p⌅�

C
p⌅

�

q [MeV/c]

HALQCD with R = 1.27 fm

pure Coulomb with R = 1.27 fm

ALICE pPb 5.02 TeV

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 100 200 300 400 500

⇤⇤

C
⇤
⇤

q [MeV/c]

HAL QCD with R = 1.05 fm

Quantum statistics with R = 1.05 fm

LL formula with R = 1.05 fm

ALICE pp 13 TeV

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 100 200 300 400 500

⇤⇤

C
⇤
⇤

q [MeV/c]

HAL QCD with R = 1.27 fm

Quantum statistics with R = 1.27 fm

LL formula with R = 1.27 fm

ALICE pPb 5.02 TeV

FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.
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FIG. 8. Source size dependence of the pΞ− and ΛΛ correlation func-
tions. The thick lines denote the results with full coupled-channel
calculation. For comparison, the calculations with the pure Coulomb
cases (pure quantum statics cases) are shown for pΞ− (ΛΛ) correla-
tion function by thin lines.

VI. SUMMARY

We studied the pΞ− and ΛΛ femtoscopy in pp and pPb col-
lisions at LHC by using the latest NΞ-ΛΛ coupled-channel
HAL QCD potential. A moderate NΞ attraction of this po-
tential produces a virtual pole below the nΞ0 threshold. On
the basis of the KPLLL formula for the momentum correla-
tions of hadron pairs, we considered the coupled-channel ef-
fect, the threshold difference, the strong interaction, and the
Coulomb interaction at the same time to analyze the pΞ− and
ΛΛ correlation functions. After evaluating the parameters of
the non-femtoscopic effects and the source function, theoreti-
cal results of the correlation functions are compared with the
experimental data by the ALICE collaboration; they are found
to be in good quantitative agreement. From this comparison,

we concluded that the negative scattering lengths in the NΞ
system is implied by the strong enhancement of the pΞ− cor-
relation function over the Coulomb contribution. Also, we
found that the ΛΛ correlation function may show a twin cusp
near the nΞ0 and pΞ− thresholds due to channel coupling,
which would be interesting to be seen in future high precision
data.

Studies with femtoscopic techniques in different collision
systems will help us to unravel the physics of hadron-hadron
interactions further. For example, it is interesting to exam-
ine the NΞ correlation function in nucleus-nucleus collisions
by changing the impact parameter, so that one can utilize the
idea of the “small-to-large ratio” to extract the strong inter-
action effect without much contamination from the Coulomb
interaction [23]. A femtoscopic study of the hadron-deuteron
correlation functions [44–47] is another feasible and valuable
direction to pursue. The production of the S = −2 system
through the (K−,K+) reaction with nuclear target is also an
alternative and promising approach to study the NΞ-ΛΛ sys-
tem in a controlled fashion [48–50].
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Appendix A: Low energy constants from modified HAL QCD
potential

The HAL QCD potential used in the text is constructed at
mπ " 146 MeV and mK " 525 MeV which are slightly
away from the physical point [10]. To estimate the effect of

ALICE PRL 123 (2019). 
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.
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the Coulomb interaction was not considered in Ref. [26].)
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Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
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Figure 2: Genuine pD− correlation function compared with different theoretical models (see text for details). The
null hypothesis is represented by the curve corresponding to the Coulomb interaction only.

red band. The purple band in Fig. 1 represents the total background that includes all contributions with
their corresponding weights. Finally, the genuine pD− correlation function is obtained by solving Eq. 1
for CpD−(k∗) and is shown in Fig. 2. The possible enhancement at low k∗ could be attributed to an overall
attractive genuine pD− final-state interaction.

The systematic uncertainties of the genuine pD− correlation function, CpD−(k∗), include (i) the un-
certainties of Cexp(k∗), (ii) the uncertainties of the λi weights, and (iii) the uncertainties related to the
parametrization of the background sources. In particular, the systematic uncertainties of Cp(K+π−π−)(k

∗)
are estimated by varying the proton and D−-candidate selection criteria and the range of the fit of the
C(k∗) parametrized from the invariant mass sidebands. The uncertainties of the λi weights are derived
from the systematic uncertainties on the D− purity and fnon-prompt reported above. The systematic un-
certainty of CpD∗−(k∗) is due to the uncertainty on the emitting source. The overall relative systematic
uncertainty on CpD−(k∗) resulting from the different sources is of 10% in the lowest k∗ interval.

The resulting genuine CpD−(k∗) correlation function can be employed to study the pD− strong interaction

that is characterized by two isospin configurations and is coupled to the nD
0

channel. First of all, in order
to assess the effect of the strong interaction on the correlation function, only the Coulomb interaction is
considered. The corresponding correlation function is obtained using CATS [73]. Secondly, various
theoretical approaches to describe the strong interaction are benchmarked, including meson exchange
(Haidenbauer et al. [21]), meson exchange based on heavy quark symmetry (Yamaguchi et al. [24]), an
SU(4) contact interaction (Hoffmann and Lutz [22]), and a chiral quark model (Fontoura et al. [23]). The
relative wave functions for the model [21] are provided directly, while for the models from [22–24] they
are evaluated by employing a Gaussian potential whose strength is adjusted to describe the corresponding
published I = 0 and I = 1 scattering lengths listed in Table 1. The pD− correlation function is computed
within the Koonin–Pratt formalism, taking into account explicitly the coupling between the pD− and nD0

channels [75] and including the Coulomb interaction [76]. The finite experimental momentum resolution
is considered in the modeling of the correlation functions [38].

The outcome of these models is compared in Fig. 2 with the measured genuine pD− correlation function.
The degree of consistency between data and models is obtained from the p-value computed in the range
k∗ < 200 MeV/c. It is expressed by the number of standard deviations nσ reported in Table 1, where the
nσ range accounts, at one standard deviation level, for the total uncertainties of the data points and the
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Table 1: Scattering parameters of the different theoretical models for the ND interaction [21–24] and degree of
consistency with the experimental data. Negative scattering parameters correspond to either a repulsive interaction
or to an attractive interaction with the presence of a bound state [24]. Positive scattering parameters correspond to
an attractive interaction.

Model f0 (I = 0) f0 (I = 1) nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [21]
– g2

σ/4π = 1 0.14 −0.28 (1.2–1.5)
– g2

σ/4π = 2.25 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [22] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [24] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [23] 0.16 −0.25 (1.1–1.5)

models. The data are compatible with the Coulomb-only hypothesis within (1.1–1.5)σ . Nevertheless,
the level of agreement slightly improves in case of the model by Yamaguchi et al. as reported in Table 1,
where the nσ values are summarized together with the scattering lengths f0. Here, the high-energy
physics convention on the scattering-length sign is adopted: a negative value corresponds to either
a repulsive interaction or to an attractive one with presence of a bound state, while a positive value
corresponds to an attractive interaction. Most notably, this is the only model in the literature that does
not predict a repulsive ND interaction and, in addition, it foresees the formation of a ND bound state with
a mass of 2804 MeV/c2 in the I= 0 channel. For the model by Haidenbauer et al., a better agreement with
the data can be achieved by fine-tuning the effective scalar coupling constant gσ [21]. As demonstrated
in Table 1, when increasing the coupling constant to g2

σ/4π = 2.25 the overall degree of consistency with
the data is improved. This also implies a change of the interaction, from repulsive to attractive.

Finally, the scattering parameters can be constrained by comparing the data with the outcome of calcu-
lations carried out varying the strength of the potential and the source radius. In this case the interaction
potential is parametrized by a Gaussian-type functional form with the range of ρ-meson exchange. In
this estimation, it is assumed that the interaction in the I = 1 channel is negligible for simplicity. The

0.7 0.8 0.9 1.0
 (fm)effR

0.5−

0.0

0.5

1.0)1−
 (f

m
1− 0,
 I=

0
f

Best fit
68% CL

effR dependence unc. on Tm
 unc.effRtotal 

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

Figure 3: Regions of 68% confidence intervals for the inverse scattering length f−1
0, I=0 as a function of the source

radius varied within one standard deviation considering only the mT dependence on Reff and the total uncertainty
(see text for details) under the assumption of negligible interaction for I = 1. The most probable value is reported
by the star symbol.
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 interaction D̄(c̄l)N (C = − 1)

• Model scattering lengths f0

 interaction and  correlation function D̄N D−p

•  correlation function D−p

• pure Coulomb case is compatible with data

• Better agreement with strongly attractive  
   interaction models for . 
• pion exchange model of Yamaguchi et al.  
  predicting 2 MeV bound state gives the lowest 

I = 0

nσ

ALICE arXiv [2201.05352]

* Background including miss PID is subtracted 
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Constraint on  scattering length I = 0 f0 f0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

 interaction and  correlation function D̄N D−p

V(r) = V0 exp(−m2r2)
•   <—  exchange m ρ (m = mρ)

• Assume negligible  int. I = 1

• Analysis with one range Gaussian potential

• Constraint on  f0, I=0

• 1  constraint —>  :

• strongly attractive with or without bound state

* Most models predicts repulsive int. for  
    —>   may have more attraction in reality.

σ f −1
0, I=0 ∈ [−0.4,0.9] fm−1

I = 1
I = 0
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 correlation D+p

• Depending on the interaction (scattering length), 
   shows enough enhancement, suppression. CD+p

  interaction and  correlation function DN D+p
  interaction D(cl̄)N (C = 1)

•  channel: only  interaction

• Complex value of  due to decay channels

• Large uncertainty for pole position and scat. lengths

D+p I = 1
a0

2 DN interaction and D+p correlation function

2.1 DN scattering length

model aDN(I=0)
0 [fm] aDN(I=1)

0 [fm] bound state (I = 0) bound state (I = 1)
1 [1] −0.43 −0.41 2620− i1
2 [5] −0.07 + i0.001 −1.47 + i0.65 2695− i77
3 [6] 0.004 + i0.02 0.33 + i0.05 2637− i40
4 [7] −0.41 + i0.04 −2.07 + i0.57 2793− i6
5 [8] - −0.764 + i0.615(D0n) 2806− i72

Table 3: I = 0 and I = 1 D̄N scattering length. The pole positions of the (quasi) bound state (closest
to DN threshold) are also listed.

2.2 potential construction

V (r) = V0 exp(−(mr)2) (2)

m = mρ. V0 is the depth of the potential at r = 0. V0 is complex for the DN interaction to introduce
the coupled-channel effect to the lower channels.

model V DN(I=0)
0 [MeV] V DN(I=1)

0 [MeV]
1 −3086 −3235
2 381− i7 −1527− i127
3 −687− i50
4 −1476− i58
5 - −1588− i359

Table 4: Fitted potential potential depth of ρ meson exchange interaction for I = 0 and I = 1.
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Figure 3: I = 1 DN potential. Thin (thick) line shows the real (imaginary) part of the potential.
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a0 ≡ ℱ(E = Eth)
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 and  sector DD DD̄
C = 2 C = 0

V(r) = V0 exp(−m2r2)
•   <—  exchange m ρ (m = mρ)
•  <— scattering lengthsV0

• Gaussian potential 

• /  lies nearby /  Tcc X(3872) DD* DD̄*
==> meson-meson molecule?

D0D̄*0En
er

gy

DD̄π

D*D̄*

D+D*−

X(3872)

ππJ/Ψ

En
er

gy

D+D*0

D0D*+

D*D*

Tcc

DDπ

• Assume dominant contribution from exotic channel (I = 0)
• Coupled-channel of two isospin channels

DD∗ correlation function and Tcc state

November 16, 2021

1 Related hadrons and channels

Recently, the signal of so called Tcc state is found in the D0D0π+ spectrum [1, 2]. In Ref. [1], the pole
mass is given as

ETcc = δm− i

2
Γ, (1)

δm = −360 keV,Γ = 48 keV, (2)

where ETcc is measured from D0D∗+ threshold Eth, D0D∗+ . The scattering length is given by

a0 = −7.16 + i1.85 fm, (3)

which is defined as a0 = F(E = Eth, D0D∗+) with D0D∗+ amplitude F .
To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = m+

π because the π+ exchange interaction exists for these channels.

2 Coupled-channel potential

We consider the coupled-channel potential of D+D∗0 and D0D∗+. The relation between the isospin basis
and charge basis is give as

|DD∗(I = 0)〉 = 1√
2

(
|D+D∗0〉 − |D0D∗+〉

)
, (5)

|DD∗(I = 1)〉 = 1√
2

(
|D+D∗0〉+ |D0D∗+〉

)
. (6)

With the I = 0 and I = 1 potential, the coupled-channel potential forD0D∗+ (channel 1) andD+D∗0(C =
+) (channel 2) are given as

VDD∗(r) =
1

2

(
VI=1(r) + VI=0(r) VI=1(r)− VI=0(r)
VI=1(r)− VI=0(r) VI=1(r) + VI=0(r)

)
(7)

Assuming that the I = 0 gives the dominant contribution we set

VI=0 =V (r), (8)

VI=1 =0. (9)

Now we determine the potential strength V0 by fitting the scattering length of aD
0D∗+

0 where the result
is shown in Table 1. We find that the real parts of the scattering length of both channels are negative in
this calculation.

1

LHCb, Nature Com. 13 (2022) 1

ETcc
= δm −

i
2

Γ

DD̄∗ correlation function

November 29, 2021

1 Related hadrons and channels

The spin-parity of X(3872) state is given as JPC = 1++ and it has isospin I = 0 [1]. The X(3872)
couples to DD̄∗ and D∗D̄∗ channels in s-wave. According to the PDG, X(3872) locates around the
D0D̄∗0 and D0D̄∗0 threshold energy. Considering that this state has C = +, the X(3872) state couples
to the following combination of DD̄∗ and D∗D̄ states.

1√
2

[
D0D̄∗0 +D∗0D̄0

]
, (1)

1√
2

[
D+D∗− +D∗+D̄−] . (2)

In this note, for simplicity, sometimes these combinations are labeled byD0D̄∗0(C = +) andD+D̄∗−(C =
+), respectively.

According to the PDG [1], the pole energy of the X(3872) is Epole = 3871.65 − i0.60 MeV. The
difference between its energy and the D0D̄∗0 threshold Eth is Eh = Epole − Eth = −0.04− i0.60 MeV.

aD
0D̄∗0,C=+

0 = −4.23 + i3.95fm. (3)

While the X(3872) couples to the I = 0 C = + channel of DD̄∗ channels, the interaction of other
channels also affect the correlation function. However, in this study we assume that, in the low-energy
region of the DD̄∗, I = 0 C = + channel gives the dominant contribution to the correlation function and
we switch off the other interaction (V = 0).1

To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = mπ because the pion exchange interaction exists for these channels.

2 Coupled-channel potential

Now we discuss the coupled-channel potential for JPC = 1++ DD̄∗ channels. The DD̄∗ and D∗D̄ states
are decomposed as

|DD̄∗, I = 0, C = ±〉 = 1√
2

[
|D+D∗−〉 − |D0D̄∗0〉

]
(5)

± 1√
2

[
|D∗+D−〉 − |D∗0D̄0〉

]
(6)

|DD̄∗, I = 1, C = ±〉 = 1√
2

[
|D+D∗−〉+ |D0D̄∗0〉

]
(7)

± 1√
2

[
|D∗+D−〉+ |D∗0D̄0〉

]
(8)

1Note that Zc(3900) with JPC = 1+− can also couple to DD̄∗ state. Thus the we may see its effect on the correlation
function.

1
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PDG, PTEP 2020, 083C01 (2020). 

EX(3872) = δm −
i
2

Γ

δm = − 0.04 MeV

Γ = 1.19 MeV

Γ = 0.048 MeV

δm = − 0.36 MeV

 and  int. from femtoscopyDD* DD̄*
a0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

==>Strong attractive interaction
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 and  int. from femtoscopyDD* DD̄*
a0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 
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DD̄

• Larger signal in the lower channels 

• Bound state like behavior for both pairs 

• Clear source size dependence 

• Moderate /  cusp D+D*0 D+D*−
Y. Kamiya, T. Hyodo, A. Ohnishi, [2203.13814 ] 
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DD

 and  int. from femtoscopyDD* DD̄*
a0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 
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ALICE 3 upgrade projection
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• Well investigated  
with future ALICE 3 upgrade

ALICE collab., CERN-LHCC-2022-009 (2022).

Y. Kamiya, T. Hyodo, A. Ohnishi, [2203.13814 ] 
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Summary
Femtoscopic correlation function in high energy nuclear collisions is a 
powerful tool to investigate the hadron-hadron interaction. 
Source size dependence is important to see the interaction detail especially 
for the coupled-channel case.  

  
Chiral SU(3) dynamics model is consistent with the large source data while 
small deviation is found in small source data.  

 
Coupled-channel HAL-QCD potential is consistent with current data from 

 and Pb collisions. 
 

Non-interacting model dan explain data but strong attractive interaction 
reduce the standard deviation. 

/  
The lower isospin partner channels are expected to show the strong source 
size dependence due to the near threshold /  states.

K−p

ΛΛ-pΞ−

pp p
D−p

DD* DD̄*

Tcc X(3872)

Thank you for your attention!



Thank you!
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K−p

Coulomb interaction: Full calculation
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• For the quantitative discussion, fully calculated Coulomb w.f.  is needed:  
•  with   

• Pure Coulomb cases ( ) 
• LL formula over estimates the Coulomb int. for heavy particle pairs.

ψC

[H0 + V ]ψC = EψC V = Vstrong + VCoulomb

Vstrong = 0

• With strong int. ( ) 
• Interference of  and  

Vstrong ≠ 0
Vstrong VCoulomb
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• For the femtoscopic study,  
full calculation is mandatory. 

Coulomb interaction
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Coupled-channel wave function
CK−p(q) = ∫ d3r SK−p(r) |ψC,(−)

K−p (q; r) |2 + ∑
j≠i

ωj ∫ d3r Sj(r) |ψC,(−)
j (q; r) |2

Coupled-channel  
wave function K̄0n, π0Σ0, ⋯

• Measured channel ( ) 
   has out going wave

K−p

• Coupled-channel w.f.  
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Source size dependence

Kamiya, Hyodo, Morita, Ohnishi, Weise, PRL 124 (2020) 13, 132501

VCoupling

• Small source ==> W.F. of Coupled-channels counts

• Small source ==> Measured channel contribution dominant



36

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics 

• Coupled-channel, energy dependent as 

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

CONSTRUCTION OF A LOCAL K̄N -π!- … PHYSICAL REVIEW C 98, 025201 (2018)

FIG. 6. Deviations "fij (z) [see Eq. (26)] of the I = 0 amplitudes in the complex energy plane relative to the original chiral SU(3)
amplitudes, visualized as contours. Upper and lower figures represent the results for "fij computed with first- and second-order polynomial
parametrizations of the potential strengths, respectively. From the left, each figure displays "fπ!,π! , "fπ!,K̄N , and "fK̄N,K̄N . Crosses denote
positions of the two poles of the original amplitude in the complex plane. The sequence of contour lines are given in steps of 0.2.

FIG. 7. Scattering amplitudes F
equiv,g
ij (dotted lines) resulting from the equivalent potential (20) in comparison with the original chiral SU(3)

dynamics amplitudes (denoted by F , sold lines) in the I = 1 channel. The real (imaginary) parts are shown by the thick (thin) lines.
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• Two pole structure of : well reproduced  Λ(1405)

CONSTRUCTION OF A LOCAL K̄N -π!- … PHYSICAL REVIEW C 98, 025201 (2018)

TABLE I. Results of computations using the equivalent coupled-channel potentials, V
equiv,g
ij of Eq. (20) and V

equiv
ij of Eq. (25). Shown are,

in this sequence, the polynomial order of V
equiv
ij , the energy range used for parameter fixing, the “accuracy measure” given by the percentage

P , and the pole positions in the I = 0 scattering amplitude. The theoretical uncertainties of the original chiral SU(3) dynamics pole positions
are taken from Ref. [51].

Potential (polynomial in E) Energy range [MeV] P High-mass pole [MeV] Low-mass pole [MeV]

V equiv,g 32 1425 − 23i 1336 − 69i

V equiv (first order) 1403–1440 84 1423 − 26i 1378 − 80i

V equiv (second order) 1362–1511 99 1424 − 27i 1380 − 81i

Original poles [51] 1424+3
−23 − 26+3

−14i 1381+18
−6 − 81+19

−8 i

Not surprisingly, the potential strengths seen in Fig. 4
reflect qualitatively the trends already expected from the
leading-order (LO, Tomozawa-Weinberg) terms of the chi-
ral SU(3) meson-baryon Lagrangian. For example, the LO
I = 0 K̄N diagonal potential at threshold, when integrated
over volume, gives UK̄N→K̄N # −3/(4f 2) # −3.4 fm2, with
the pseudoscalar meson decay constant f # 92 MeV. The
corresponding LO I = 0 π! diagonal potential is slightly
stronger and gives Uπ!→π! # −1/f 2 # −4.5 fm2. Next-to-
leading-order terms are important, of course, and contribute to
the more detailed quantitative behavior of the Uij .

The smooth energy dependence of U
equiv,"V
ij (

√
s) in Fig. 4

justifies terminating the polynomial expansion (25) of the
parametrized potential V

equiv
ij at low orders (i.e., first or second

order, αmax = 1, 2). The energy range of validity for this
parametrization is determined by maximizingP as discussed in
Sec. II B. The lower boundary of this energy window is varied
in steps of one MeV upward from 1200 MeV, while the upper
boundary is chosen below 1660 MeV in order to avoid the
nonanalytic behavior at the threshold of the (eliminated) η#
channel. By this procedure, the energy window of optimized

FIG. 4. Solid lines: volume integrals of equivalent potentials
including the adjustment term "Vij (

√
s), U

equiv,"V
ij (

√
s) of Eq. (32),

in the isospin I = 0 channels (K̄N → K̄N,π! → π!, and K̄N →
π!). Shown for comparison are the parametrizations U

equiv
ij (

√
s )

according to Eq. (25) with first- and second-order polynomial ex-
pansions (dotted and dashed lines, respectively). The energy range
for fitting the first-order (second-order) polynomial representations
of V

equiv
ij is 1403–1440 MeV (1362–1511 MeV).

fitting is determined as 1403–1440 MeV (1362–1511 MeV)
for the first-order (second-order) polynomial. The resulting
polynomial coefficients, Kα,ij , are summarized in Table II.
They display excellent convergence in the following sense: The
K2 coefficients are an order of magnitude smaller than K0 and
K1. The latter do not change significantly when including the
K2 terms. This indicates the dominance of the linear energy
dependence and justifies the truncation of the expansion at
the second order. The volume integral U

equiv
ij (

√
s) is shown

in Fig. 4 by dashed (first-order parametrization) and dotted
(second-order parametrization) lines.

The scattering amplitudes calculated using the optimized
potential V

equiv
ij of Eq. (25), with first- and second-order

polynomials, are compared with the original chiral SU(3)
dynamics amplitudes in Fig. 5. The results of both the first- and
second-order parametrizations are now significantly improved
from those of F equiv,g in Fig. 2, thanks to the added adjustment
term. It is worth noting that the potential with the first-
order polynomial properly extrapolates the amplitude down
to the region near the π! threshold even though the lower
boundary of the energy range for parameter adjustment is
around 1400 MeV, far above the π! threshold at ∼1330 MeV.
This can be understood by the almost linear energy dependence
of the potential strength seen in Fig. 4.

In order to investigate the pole structure of the #(1405), the
scattering amplitudes are analytically continued into the region
of complex energies. In Fig. 6, we plot the deviations of the
amplitudes, "fij (z) of Eq. (26), in the complex energy plane.
With both the first- and second-order polynomial potentials,
each component of the original chiral SU(3) amplitude matrix
is reproduced with 20% accuracy, including the energy region
of the high-mass (K̄N -dominated) pole of the #(1405). The
low-mass pole can likewise be covered when the second-order
polynomial is used. For a more quantitative assessment, the
pole positions and the accuracy measure P defined in Eq. (28)
are summarized in Table I. The first-order polynomial potential
reproduces the pole positions within the theoretical uncertain-
ties given in Ref. [51]. The second-order polynomial version of
the potential further improves these pole positions, which are
then reproduced to an accuracy of 1 MeV. The value of P is as
high as 84 (99) with the first-order (second-order) potential.
This result is comparable with or better than that of the
single-channel K̄N potential in Ref. [18], which givesP = 96.
Recalling that the complete set of available experimental data
for K−p scattering and reactions is reproduced accurately by
the original amplitude of chiral SU(3) dynamics, the equivalent

025201-7

High-mass pole : 1424 - 27i 
Low-mass pole  : 1380 - 81i

Original chiral SU(3) : 1424 - 26i 
                                     1381 - 81i

 interaction and  correlationK̄N K−p
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Comparison with ALICE data

Cfit(q) = 𝒩[1 + λ{CK−p(q) − 1}]

Fitting result

CK−p(q) = ∑
j

ωj ∫ d3r S(r) |ΨC,(−)
j (q, r) |2 ]

 • Fitting function

 • Fitting range:  q < 120 MeV/c

•  ALICE data has been well reproduced with the reasonable values of parameters.

• Coupled-channel source contribution is essential to reproduce the data.
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 interaction and  correlation function D̄N D−p

 Background for  correlation function D−p
First study of the two-body scattering involving charm hadrons ALICE Collaboration
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Figure 1: Experimental pD− correlation function (black symbols) together with the contribution from p(K+π−π−)

(green band) and pD∗− (red band), and the total background model (purple band). The p(K+π−π−) and pD∗−

contributions are not scaled by the respective λ parameter. Statistical (bars) and systematic uncertainties (boxes)
are shown separately. The width of the dark (light) shaded bands depicts the statistical (total) uncertainty of the
parametrized background contributions.

be (7.7± 0.5(stat)± 0.2(syst))%. The systematic uncertainty is evaluated by repeating the procedure
with different sets of selection criteria, varying the fitting parameters in the raw-yield extraction, and by
weighting the multiplicity distribution in the MC sample used for the efficiency computation in order to
reproduce the one in data. Differently from the component originating from beauty-hadron weak decays,
D± mesons originating from excited charm-meson strong decays cannot be experimentally resolved from
promptly produced D± mesons due to their short lifetime. The two largest sources are the D∗± → D±π0

and D∗± → D±γ decays, having BR = (30.7± 0.5)% and BR = (1.6± 0.4)% [59], respectively. Their
contribution is estimated from the production cross sections of D+ and D∗+ mesons measured in pp
collisions at

√
s = 5.02 TeV [62, 63] and employing the PYTHIA 8 decayer for the description of the

D∗± → D±X decay kinematics. The fraction of D± mesons in 1 < pT < 10 GeV/c originating from D∗±

decays is estimated to be (27.6±1.3(stat)±2.4(syst))%.

The proton and D− candidates are then combined and their relative momentum k∗ is evaluated as
k∗ = 1

2 × |ppp∗p − ppp∗D|, where ppp∗p,D are the momenta of the two particles in the pair rest frame. The
k∗ distribution of pD− pairs, Nsame(k∗), is then divided by the one obtained combining proton and
D− candidates from different events, Nmixed(k∗), to compute the two-particle momentum correlation
function, which is defined as Cexp(k∗) =N ×Nsame(k∗)/Nmixed(k∗) [64]. The normalization constant N

is obtained from k∗ ∈ [1500,2000] MeV/c where the correlation function is independent of k∗ [65]. Since
the correlation functions for pD− and pD+ are consistent with each other within statistical uncertainties,
they are combined and in the following pD− will represent pD− ⊕ pD+. The resulting correlation
function Cexp(k∗) is displayed in Fig. 1. The data are compatible with unity for k∗ > 500 MeV/c,
while they show a possible hint of an increase for lower k∗ values. In total 200 pD− and 221 pD+

pairs contribute to Nsame(k∗) in the region of k∗ < 200 MeV/c, where model calculations [21–24] predict
a deviation from unity. The systematic uncertainties of Cexp(k∗) are assessed by simultaneously varying
the proton and D− selection criteria.

The measured two-particle momentum correlation function can be related to the source function and
the two-particle wave function via the Koonin–Pratt equation C(k∗) =

∫

d3r∗S(r∗)|Ψ(k∗,r∗)|2 [64],

4

ALICE arXiv [2201.05352]
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f0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

 interaction and  correlation function D̄N D−p

Constraint on  scattering length I = 0 f0First study of the two-body scattering involving charm hadrons ALICE Collaboration
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Figure B.3: χ2 distributions obtained by comparing the measured CpD−(k∗) with the correlation function calcu-
lated with an interaction modeled by a Gaussian potential with an interaction range given by ρ-meson exchanges
as a function of the inverse scattering length (left panel) and the interaction potential (right panel) for I = 0. The
blue dotted lines represent the value of f−1

0, I=0 and VI=0 for which the χ2 is minimum and for the 1σ confidence
interval.

of the data are considered in the bootstrap procedure, as well as the uncertainty on the emitting source radius (Reff)
in the computed CpD−(k∗), which is varied within 1σ of its uncertainty. The resulting overall χ2 distributions are
shown in Fig. B.3 as a function of of f−1

0, I=0 and VI=0 in the left and right panels, respectively. The data are found to
be consistent with a potential strength of VI=0 ∈ [−1450,−1050] MeV within 1σ . This corresponds to an inverse
scattering-length interval of f−1

0, I=0 ∈ [−0.4,0.9] fm−1. The same procedure was repeated for fixed values of Reff
in order to obtain the 1σ confidence interval as a function of the emitting source radius.

22

ALICE arXiv [2201.05352]



CK−p(q) = ∫ d3r SK−p(r)[∑
l≥1

|φC
l (q; r) |2 + |ψC,(−)

K−p (q; r) |2 ]+ ∑
j≠i

ωj ∫ d3r Sj(r) |ψC,(−)
j (q; r) |2
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 correlation with Koonin-Pratt FormulaK−p

Coupled-channel effect and source size 

(1) Modification of  ψC,(−)
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analysis delivered a scattering length and an e↵ective range of f�1
0 = �0.91±0.31+0.07

�0.56 fm�1

and d0 = 8.52± 2.56+2.09
�0.74 fm, and these values correspond to a repulsive interaction. How-

ever, it was shown that the values and the sign of the scattering parameters strongly depend

on the treatment of feed-down contributions from weak decays to the measured correlation.

A re-analysis of the data outside the STAR collaboration extracted a positive value for

f�1
0 corresponding to a shallow attractive interaction potential (32). The ⇤–⇤ correlations
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Figure 4

(Color online) Right panel: Exclusion plot of the scattering parameters for the ⇤–⇤ interaction
evaluated by testing the di↵erent values against the ⇤–⇤ correlation. Left panel: Correlation
function of p–⌦� pairs measured by ALICE in high multiplicity pp collisions atp
s = 13 TeV (40). The data are shown by the black symbols, the systematic errors are shown by

the grey boxes. The green line represents the expected correlation function by taking into account
only the Coulomb interaction, its width is determined by the uncertainty in the source radius.
The blue and orange bands consider both Coulomb and strong interaction by the HAL QCD
collaboration (81). The orange band considers for the strong interaction only the elastic
contributions, the blue band considers elastic and inelastic contributions, its width represents the
uncertainties associated with the lattice QCD calculations, and the grey band represents, in
addition, the uncertainties associated with the determination of the source radius. The source
radius, determined experimentally, is 0.95± 0.06 fm. The inset shows in detail the correlation
function around unity. For more details see text.

measured in pp and p-Pb collisions by ALICE at
p
sNN = 7, 13 TeV and 5.02 TeV, respec-

tively (35, 38) were also employed to study the interaction, and the residual correlations

were treated by means of a novel data-driven method. Since the statistics of the ⇤–⇤ pairs

with small relative momentum was limited, instead of extracting the scattering parameters

from the fit of the correlation function a di↵erent approach was carried out (38). A scan

of di↵erent combinations of scattering parameters (f�1
0 ,d0) in the range f�1

0 2 [�2, 5]

fm�1 and d0 2 [0, 18] fm was performed. For each combination of values of the scattering

parameters the correlation function is evaluated for several meson-exchange models of the

⇤–⇤ interaction by using the Lednický-Lyuboshitz (LL) method. The agreement with the

experimental correlation function, using all data samples from pp collisions at
p
s = 7, 13

TeV and p-Pb collisions at
p
sNN = 5.02 TeV, is quantified in terms of a confidence level fol-

lowing the method in (82). The CATS framework is used to cross check the results from the

LL method; the di↵erences in the correlation functions obtained using the two methods are

negligible. Also the gaussian source approximation, inherent to the LL method, is validated

by cross checks using the source profile predicted by the EPOS transport model (67, 44)

and considering the e↵ects of short lived resonances. The results, expressed in number of

standard deviations (n�) are shown in the left panel of Fig. 4. The black hatched area rep-

12 Author et al.
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 Current situation of experimental data of  corrleaitonpΩ

 dibaryon and  correlation NΩ pΩ

• STAR collaboration • ALICE collaborationSTAR Collaboration / Physics Letters B 790 (2019) 490–497 495

Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.
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long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

bound state ( )a0 > 0

Strong suppression

p + p

R = 0.73 fm

Enhancement



42

T. Iritani et al. PLB 792 (2019) 284–289
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• No repulsive core ← N(lll) Ω(sss) 
• Strong attraction with  dibaryon 

mπ = 146 MeV, mK = 525 MeV

NΩ

7

ticularly for the ⌦⌦ potential with t/a = 16 in Fig. 4, since
a0 is extremely large.

Shown the bottom-right panel of Fig. 4 is the small-to-large
ratio, CSL(q) between 40-60% (or 60-80%) for small systems
and 10-20% for large systems. Due to the cancellation of
the Coulomb effect, one now finds notable enhancement of
CSL(q) above 1 for small q due to the strong ⌦⌦ attraction,
and the reduction of CSL(q) below 1 for large q due to the
HBT effect.

V. p⌦ CORRELATION

Let us now move on to the results for p⌦ correlations.
Among J = 1 (5S2) and J = 2 (3S1) channels which the
p⌦ pair can take, the J = 2 channel is expected to have a
shallow bound state as indicated from lattice QCD [14]. Note,
however, that the p⌦ pair is not the lowest energy channel in
the S = �3 dibaryon system: There exist thresholds of the
octet-octet states (⇤⌅ and ⌃⌅) at lower energies, which act as
absorptive channels for p⌦. The S-wave J = 2 channel cou-
ples to octet-octet states only through the D wave, so that the
decay is dynamically suppressed and its effect on the correla-
tion function is considered to be sufficiently small. According
to Ref. [38], where the J = 2 N⌦ interaction is discussed
with the meson exchange model including the decay chan-
nels, the coupling does not change the weak-binding nature of
p⌦. Thus, in the following calculations, we apply the single-
channel approximation to the J = 2 p⌦ correlation function.

In the previous study on CSL(q) for p⌦ [19], the J = 2 po-
tential obtained by lattice QCD simulations with heavy quark
masses [39] were used. Below, we update the analysis by us-
ing the J = 2 potential for nearly physical quark masses as
described below.

A. N⌦ interaction from lattice QCD

The N⌦ interaction in J = 2 channel has been calculated
by (2+1)-flavor lattice QCD simulations [14] with the same
setup as the ⌦⌦ case discussed in Sec.IV A. In this case, the
Euclidean time interval was chosen to be t/a = 11 � 14 to
avoid significant statistical errors for large t. Resultant poten-
tials with statistical errors are recapitulated in Fig. 5 together
with the fitted potential of a Gaussian + (Yukawa)2 form. The
scattering length and the effective range without the Coulomb
interaction are a0 ' 5.3 fm and reff ' 1.26 fm, respectively,
so that a weakly bound N⌦ appears with the binding energy
EB ⇠ 1.54 MeV.

Table III shows the low energy scattering parameters and
binding energies obtained by solving the Schrödinger equa-
tion in the presence of the attraction from the strong inter-
action and the extra attraction from the Coulomb interaction.
The value of the resultant scattering length is compatible with
the expected effective system size in heavy-ion collisions, thus
one can expect characteristic depletion of the correlation func-
tion and its variation for the system with bound state, against
system size as seen from Fig. 1.
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FIG. 5. The S-wave N⌦ potential with J = 2 from lattice QCD
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2
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2
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TABLE III. S-wave scattering length a0, effective range reff, and
binding energy of the p⌦ pair with the lattice QCD potential for dif-
ferent t/a and the Coulomb attraction.

t/a a0 [fm] reff [fm] EB [MeV]
11 3.45 1.33 2.15
12 3.38 1.31 2.27
13 3.49 1.31 2.08
14 3.40 1.33 2.24

B. Correlation function

In addition to the J = 2 channel, the N⌦ system has the
J = 1 channel which is expected to couple strongly with low-
lying octet-octet states due to fall apart decay in the S-wave.
In the same way as Ref. [19], we consider a limiting case
where the J = 1 p⌦ pairs are perfectly absorbed into low-
lying states through the potential V J=1(r) = �i✓(r0 � r)V0.
The strength V0 is taken to be infinity and r0 is set to 2
fm where Coulomb interaction dominates over the J = 1
LQCD potential. Accordingly, the wave function is written
as 'J(q, r) = '

C(q, r)�'
C
0 (r)+�

C
0 (r), where the scatter-

ing wave function in the S-wave, �C
0 (r), receives the effects

of the interactions.
Then the total probability density reads

|'p⌦(q, r)|2 =
2X

J=1

2J + 1

8
|'J(q, r)|2. (21)

Here the J = 2 contribution which is of our interest, is
weighted by a large factor 5/8. The number of the low mo-
mentum pairs decrease due to the absorption in the J = 1

•  correlation function with HALQCD potential  pΩ−
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Fig. 5. The ratio of the effective range reff and the scattering length a0 as a func-
tion of reff for N!(5S2) (red circle) and !!(1S0) [7] (blue diamond) on the lattice, 
as well as for N N(3S1) (purple up-pointing triangle) and N N(1S0) (green down-
pointing triangle) [37] in experiments.

a0 = 5.30(0.44)(+0.16
−0.01) fm, reff = 1.26(0.01)(+0.02

−0.01) fm, (8)

where the central values and the statistical errors are estimated at 
t/a = 12, while the systematic errors in the last parentheses are 
estimated from the central values for t/a = 11, 13 and 14.

In Fig. 5, the ratio reff/a0 as a function of reff for N!(5S2)
is plotted together with the experimental values for N N(3S1)
(deuteron) and N N(1S0) (di-neutron) as well as lattice QCD value 
for !!(1S0) (di-Omega) [7]. Small values of |reff/a0| in all these 
cases indicate that these systems are located close to the unitary 
limit.9

The binding energy B and the root mean square distance 
(
√

〈r2〉) of N!(5S2) are obtained by solving the Schrödinger equa-
tion with the potential fitted to our lattice results:

B = 1.54(0.30)(+0.04
−0.10) MeV,

√
〈r2〉 = 3.77(0.31)(+0.11

−0.01) fm. (9)

Although the N-! is attractive everywhere, the binding energy is 
as small as ∼ 1 MeV due to the short range nature of the potential. 
Accordingly, the root mean square distance is comparable to the 
scattering length, indicating that the system is loosely bound like 
the deuteron and the di-Omega.

In our pilot study [10], we found B = 18.9(5.0)(+12.1
−1.8 ) MeV

for heavy pion mass mπ = 875 MeV. The larger magnitude of B
than the present result in Eq. (9) originates partly from the heavy 
masses of N and ! in [10] which reduce the kinetic energy and 
thus increase the binding energy. Another reason is that the short-
range attraction for heavy pion is relatively stronger.

So far, we have not considered extra attraction in the p!−

system due to Coulomb attraction. By taking into account the cor-
rection V C(r) → V C(r) − α/r with α ≡ e2/(4π) = 1/137.036, we 
obtain the observables,

B p!− = 2.46(0.34)(+0.04
−0.11) MeV,

√
〈r2〉

p!− = 3.24(0.19)(+0.06
−0.00) fm. (10)

These results for p!−(5S2) are summarized in Fig. 6 together with 
n!−(5S2) without Coulomb correction.

Before ending this section, let us briefly discuss other possible 
systematic errors in Eqs. (8), (9) and (10). The first one is the finite 
volume effect whose typical error would be exp(−2mπ (L/2)) '

9 The values in the fm unit are (a0, reff)N N(3S1) = (5.4112(15), 1.7463(19)), 
(a0, reff)N N(1S0) = (−23.7148(43), 2.750(18)) from the experiment [37], and 
(a0, reff)!!(1S0) = (4.6(6)(+1.2

−0.5), 1.27(3)(+0.06
−0.03)) from the lattice QCD calculation [7].

Fig. 6. The binding energy B and the root mean square distance 
√

〈r2〉 for n!−

(red circle) and for p!− (blue square). In both figures, inner bars correspond to 
the statistical errors, while the outer bars are obtained by the quadrature of the 
statistical and systematic errors.

exp(−6) ' 0.25% and is much smaller than the statistical er-
rors in our simulation. The second one is the finite cutoff effect, 
which is also expected to be small assuming the naive order es-
timate ($a)2 ≤ 1% with the non-perturbative O(a) improvement. 
The third systematic error is due to the slightly heavy hadron 
masses (mπ = 146 MeV, mN = 955 MeV and m! = 1712 MeV). 
By using the same parameter set for t/a = 12 in Table 1 with 
mπ = 146 MeV kept fixed but with physical baryon masses (mp =
938 MeV and m!− = 1672 MeV), we find less binding than Eq. (10)
as expected: B p!− ' 2.18(32) MeV and 

√
〈r2〉p!− ' 3.45(22) fm. 

On the other hand, if we additionally employ m±
π = 140 MeV for 

the potential (see Eq. (6)), we find more binding than Eq. (10)
due to smaller pion mass: B p!− ' 3.00(39) MeV and 

√
〈r2〉p!− '

3.01(16) fm.

5. Summary

In this paper, we have studied the N-! system in the 5S2
channel, which is one of the promising candidates for quasi-stable 
dibaryon, from the (2+1)-flavor lattice QCD simulations with nearly 
physical quark masses (mπ ' 146 MeV and mK ' 525 MeV). The 
N-! central potential in the 5S2 channel obtained by the time-
dependent HAL QCD method is found to be attractive in all dis-
tances. The scattering length and the effective range obtained 
by solving the Schrödinger equation using the resultant potential 
show that N!(5S2) is close to unitarity similar to the cases of the 
deuteron (pn) and di-Omega (!!). The binding energy of p!−

without (with) the Coulomb attraction is about 1.5 MeV (2.5 MeV), 
which indicates the existence of a shallow quasi-bound state below 
the N! threshold. In our simulation, we did not find a signature 
of the strong coupling between N!(5S2) and $% or &% in the D-
wave state, while it remains to be an important future problem to 
analyze the coupled channel system with octet baryons, $% and 
&%.

The N!(5S2) in the unitary regime can be studied in the 
two-particle correlation measurements in p-p and p-nucleus and 
nucleus-nucleus collisions as suggested theoretically in [12] and 
experimentally reported by the STAR Collaboration at RHIC [16]. 
Phenomenological analyses along this line on the basis of the re-
sults in the present paper will be reported elsewhere [38].
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Left panel: Comparison of the strong interaction potentials for p–⌦� from references (92)
(dashed lines) and (91) (orange solid line). The potentials , VII (red) and VIII (blue) imply a
p–⌦� bound state with binding energies due to strong interactions of 0.05 and 24.8 MeV. No
bound state is associated with the VI (green) potential. The orange solid line represents the HAL
QCD potential with nearly physical quark masses (91) predicting a binding energy of 1.54 MeV.
Right panel: Correlation function for p–⌦� pairs corresponding to the potentials shown in the left
panel for a radius of 0.95 fm.

Strong Strong + Coulomb

VI – –

VII 0.05 MeV 0.63 MeV

VIII 24.8 MeV 26.9 MeV
Table 2 Predicted binding energies for the VI , VII and VIII potentials for the p–⌦�

J = 2 channel from (92).

as VI , VII and VIII . These potentials are based on dated calculations by the HAL QCD

collaborations with non-physical quark masses (93) (m⇡ = 875 MeV, mK = 916 MeV). For

the construction of the VII potential, the lattice QCD data in (93) is fitted by an attrac-

tive Gaussian core plus and attractive Yukawa tail, while for the VI and VIII potentials the

range-parameter at long distance of the fit is varied in order to obtain a weaker and stronger

attraction, respectively. The radial shape of such potentials compared with the most recent

HAL QCD potential with physical quark masses (91) (m⇡ = 146 MeV, mK = 525 MeV)

can be seen in the left panel of Fig. 5, while the predicted binding energy for each case is

listed in table 2.

The right panel of Fig. 5 displays the corresponding correlation functions for a source

of r0 = 0.95± 0.06 fm. One can compare the limiting cases of a deeply bound p–⌦� bound

state with a binding energy of 24.8 MeV (VIII potential, blue curves) with the case of a

very shallow binding energy of 0.05 MeV (VII potential, red curves) or no bound state (VI

potential, green curves). Although the VI potential is much less attractive than the VIII

at all distances, the correlation function of the former is higher due to the deep depletion

caused in the latter by the presence of a deeply bound state. Also the comparison between

the VII and VIII curves shows the same e↵ect, since the shallow binding energy of the

VII potential is reflected into a much shallower depletion as well. The correlation function

corresponding to the most recent HAL QCD potential with physical quark masses (91) is

shown by the orange curve. The binding energy of a few MeV is reflected in a correlation
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bound state is associated with the VI (green) potential. The orange solid line represents the HAL
QCD potential with nearly physical quark masses (91) predicting a binding energy of 1.54 MeV.
Right panel: Correlation function for p–⌦� pairs corresponding to the potentials shown in the left
panel for a radius of 0.95 fm.

Strong Strong + Coulomb

VI – –

VII 0.05 MeV 0.63 MeV

VIII 24.8 MeV 26.9 MeV
Table 2 Predicted binding energies for the VI , VII and VIII potentials for the p–⌦�

J = 2 channel from (92).

as VI , VII and VIII . These potentials are based on dated calculations by the HAL QCD

collaborations with non-physical quark masses (93) (m⇡ = 875 MeV, mK = 916 MeV). For

the construction of the VII potential, the lattice QCD data in (93) is fitted by an attrac-

tive Gaussian core plus and attractive Yukawa tail, while for the VI and VIII potentials the

range-parameter at long distance of the fit is varied in order to obtain a weaker and stronger

attraction, respectively. The radial shape of such potentials compared with the most recent

HAL QCD potential with physical quark masses (91) (m⇡ = 146 MeV, mK = 525 MeV)

can be seen in the left panel of Fig. 5, while the predicted binding energy for each case is

listed in table 2.

The right panel of Fig. 5 displays the corresponding correlation functions for a source

of r0 = 0.95± 0.06 fm. One can compare the limiting cases of a deeply bound p–⌦� bound

state with a binding energy of 24.8 MeV (VIII potential, blue curves) with the case of a

very shallow binding energy of 0.05 MeV (VII potential, red curves) or no bound state (VI

potential, green curves). Although the VI potential is much less attractive than the VIII

at all distances, the correlation function of the former is higher due to the deep depletion

caused in the latter by the presence of a deeply bound state. Also the comparison between

the VII and VIII curves shows the same e↵ect, since the shallow binding energy of the

VII potential is reflected into a much shallower depletion as well. The correlation function

corresponding to the most recent HAL QCD potential with physical quark masses (91) is

shown by the orange curve. The binding energy of a few MeV is reflected in a correlation
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D+D*0

D0D*+

Tcc
D0D*+ D+D*0

D+D*0 threshold

• Bound state like behavior for both pairs 

• Stronger source size dep. for  

•  cusp is not prominent

D0D*+

D+D*0

1.41 MeV
0.36 MeV

DD∗ correlation function and Tcc state

November 16, 2021

1 Related hadrons and channels

Recently, the signal of so called Tcc state is found in the D0D0π+ spectrum [1, 2]. In Ref. [1], the pole
mass is given as

ETcc = δm− i

2
Γ, (1)

δm = −360 keV,Γ = 48 keV, (2)

where ETcc is measured from D0D∗+ threshold Eth, D0D∗+ . The scattering length is given by

a0 = −7.16 + i1.85 fm, (3)

which is defined as a0 = F(E = Eth, D0D∗+) with D0D∗+ amplitude F .
To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = m+

π because the π+ exchange interaction exists for these channels.

2 Coupled-channel potential

We consider the coupled-channel potential of D+D∗0 and D0D∗+. The relation between the isospin basis
and charge basis is give as

|DD∗(I = 0)〉 = 1√
2

(
|D+D∗0〉 − |D0D∗+〉

)
, (5)

|DD∗(I = 1)〉 = 1√
2

(
|D+D∗0〉+ |D0D∗+〉

)
. (6)

With the I = 0 and I = 1 potential, the coupled-channel potential forD0D∗+ (channel 1) andD+D∗0(C =
+) (channel 2) are given as

VDD∗(r) =
1

2

(
VI=1(r) + VI=0(r) VI=1(r)− VI=0(r)
VI=1(r)− VI=0(r) VI=1(r) + VI=0(r)

)
(7)

Assuming that the I = 0 gives the dominant contribution we set

VI=0 =V (r), (8)

VI=1 =0. (9)

Now we determine the potential strength V0 by fitting the scattering length of aD
0D∗+

0 where the result
is shown in Table 1. We find that the real parts of the scattering length of both channels are negative in
this calculation.
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 correlation and  stateDD̄* X(3872)

D0D̄*0

D+D*−

X(3872)
D0D̄*0

D+D*− threshold

8.23 MeV

0.03 MeV

R =

•  : Strong source size dep. 

•  : Small effect of the strong int. (Coulomb int dominance) 

• Moderate  cusp

D0D*+

D+D*−

D+D*+

PDG, PTEP 2020, 083C01 (2020)

EX(3872) = δm −
i
2

Γ

δm = − 0.04 MeV
Γ = 1.19 MeV

DD̄∗ correlation function

November 29, 2021

1 Related hadrons and channels

The spin-parity of X(3872) state is given as JPC = 1++ and it has isospin I = 0 [1]. The X(3872)
couples to DD̄∗ and D∗D̄∗ channels in s-wave. According to the PDG, X(3872) locates around the
D0D̄∗0 and D0D̄∗0 threshold energy. Considering that this state has C = +, the X(3872) state couples
to the following combination of DD̄∗ and D∗D̄ states.

1√
2

[
D0D̄∗0 +D∗0D̄0

]
, (1)

1√
2

[
D+D∗− +D∗+D̄−] . (2)

In this note, for simplicity, sometimes these combinations are labeled byD0D̄∗0(C = +) andD+D̄∗−(C =
+), respectively.

According to the PDG [1], the pole energy of the X(3872) is Epole = 3871.65 − i0.60 MeV. The
difference between its energy and the D0D̄∗0 threshold Eth is Eh = Epole − Eth = −0.04− i0.60 MeV.

aD
0D̄∗0,C=+

0 = −4.23 + i3.95fm. (3)

While the X(3872) couples to the I = 0 C = + channel of DD̄∗ channels, the interaction of other
channels also affect the correlation function. However, in this study we assume that, in the low-energy
region of the DD̄∗, I = 0 C = + channel gives the dominant contribution to the correlation function and
we switch off the other interaction (V = 0).1

To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = mπ because the pion exchange interaction exists for these channels.

2 Coupled-channel potential

Now we discuss the coupled-channel potential for JPC = 1++ DD̄∗ channels. The DD̄∗ and D∗D̄ states
are decomposed as

|DD̄∗, I = 0, C = ±〉 = 1√
2

[
|D+D∗−〉 − |D0D̄∗0〉

]
(5)

± 1√
2

[
|D∗+D−〉 − |D∗0D̄0〉

]
(6)

|DD̄∗, I = 1, C = ±〉 = 1√
2

[
|D+D∗−〉+ |D0D̄∗0〉

]
(7)

± 1√
2

[
|D∗+D−〉+ |D∗0D̄0〉

]
(8)

1Note that Zc(3900) with JPC = 1+− can also couple to DD̄∗ state. Thus the we may see its effect on the correlation
function.
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1 Related hadrons and channels

Recently, the signal of so called Tcc state is found in the D0D0π+ spectrum [1, 2]. In Ref. [1], the pole
mass is given as

ETcc = δm− i

2
Γ, (1)

δm = −360 keV,Γ = 48 keV, (2)

where ETcc is measured from D0D∗+ threshold Eth, D0D∗+ . The scattering length is given by

a0 = −7.16 + i1.85 fm, (3)

which is defined as a0 = F(E = Eth, D0D∗+) with D0D∗+ amplitude F .
To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = m+

π because the π+ exchange interaction exists for these channels.

2 Coupled-channel potential

We consider the coupled-channel potential of D+D∗0 and D0D∗+. The relation between the isospin basis
and charge basis is give as

|DD∗(I = 0)〉 = 1√
2

(
|D+D∗0〉 − |D0D∗+〉

)
, (5)

|DD∗(I = 1)〉 = 1√
2

(
|D+D∗0〉+ |D0D∗+〉

)
. (6)

With the I = 0 and I = 1 potential, the coupled-channel potential forD0D∗+ (channel 1) andD+D∗0(C =
+) (channel 2) are given as

VDD∗(r) =
1

2

(
VI=1(r) + VI=0(r) VI=1(r)− VI=0(r)
VI=1(r)− VI=0(r) VI=1(r) + VI=0(r)

)
(7)

Assuming that the I = 0 gives the dominant contribution we set

VI=0 =V (r), (8)

VI=1 =0. (9)

Now we determine the potential strength V0 by fitting the scattering length of aD
0D∗+

0 where the result
is shown in Table 1. We find that the real parts of the scattering length of both channels are negative in
this calculation.
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