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BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χEFT à la Weinberg (1990)

Advantages:

Power counting
systematic improvement by going to higher order

Possibility to derive two- and three-baryon forces and external
current operators in a consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar
mesons (π, K , η)

• pseudoscalar-meson exchanges
• contact terms – represent unresolved short-distance dynamics

involve low-energy constants (LECs) that need to be fixed
by a fit to data

ΛN-ΣN interaction
LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

(BB systems with strangeness S = −1 to−6)
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New ΣN data from E40 Collaboration at J-PARC

Σ+p: T. Nanamura et al., arXiv:2203:08393
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fss2

NSC97f

EFT NLO13 (cutoff 600MeV) χ
EFT NLO19 (cutoff 600MeV)χ

ESC08 (0.55 GeV/c)

E289 data (0.35<p(GeV/c)<0.75)

E251 data (0.3<p(GeV/c)<0.6)

present work

(Σ−p: K. Miwa et al., PRC 104 (2021) 045204; Σ−p → Λn: K. Miwa et al., PRL 128 (2021) 072501)

plab = 500 MeV/c (Elab = 100.7 MeV); plab = 600 MeV/c (Elab = 142.8 MeV)

beyond of validity of NLO interaction?; role of higher partial waves?
(Λpπ+ threshold is at plab ≈ 600 MeV/c)
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Extension of chiral EFT interaction up to NNLO

(Nucleon-nucleon forces in chiral EFT (E. Epelbaum))
4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

(short-range loop contribu-
tions still to be worked out)

have not been worked 
out yet
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

N2LO: no new (additional) LECs in the two-body sector

leading-order three-body forces (3BFs)
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NN interaction in chiral EFT
Semilocal momentum-space (SMS) regularized chiral NN potential
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(Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86) [up to N4LO (N4LO+) !!]

LO to NLO: drastic change in all partial waves

NLO to N2LO: changes mostly in P-waves and higher partial waves
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chiral YN potential up to NNLO
adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86:

“Semilocal momentum-space regularized (SMS) chiral NN potentials”

• employ a regulator that minimizes artifacts from cutoff Λ

nonlocal cutoff (~q = ~p′ − ~p)

V reg
1π ∝

e−
p′4+p4

Λ4

~q2 + m2
π

→ 1
~q2 + m2

π

[
1− p′4 + p4

Λ4
+O(Λ−8)

]

local cutoff:

V reg
1π ∝

e−
~q2+m2

π
Λ2

~q2 + m2
π

→ 1
~q2 + m2

π

− 1
Λ2

+
~q2 + m2

π

Λ4
+ ...

does not affect long-range physics at any order in the 1/Λ2 expansion

applicable to 2π exchange too:

V2π =
2
π

∫ ∞
2mπ

µdµ
ρ(µ)

~q2 + µ2
→ V reg

2π = e−
~q2

2Λ2
2
π

∫ ∞
2mπ

µdµ
ρ(µ)

~q2 + µ2
e−

µ2

2Λ2 + ...
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Preliminary results for SMS chiral YN interactions
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Σ+
p -> Σ+

p

SMS YN potentials up to NLO, NNLO (with Λ = 550 MeV)
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ2 (36 data points):
NLO19(600): 16.0 SMS NLO: 15.2 SMS NNLO: 15.6

cross sections dominated by S-waves (are already well described at NLO)
→ (as expected) practically no change when going to NNLO
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Preliminary results for SMS YN interactions
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fss2
NSC97f
Jülich 04

Σ+
p -> Σ+

p

integrated cross sections at higher energies not included in the fitting process!

Σ+p → Σ+p and Σ−p → Σ−p cross sections:

σ =
2

cos θmax − cos θmin

∫ cos θmax

cos θmin

dσ(θ)

d cos θ
d cos θ

cos θmin = −0.5; cos θmax = 0.5

fss2 ... Fujiwara et al. (constitutent quark model) Jülich 04, Nijmegen NSC97f ... meson-exchange potentials
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Preliminary results for SMS YN interactions
Σ+p (T. Nanamura et al., arXiv:2203:08393)
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LECs in the 1S0, 3S1-3D1 fixed from low-energy cross sections

SMS NLO: LECs in 3P-waves taken over from NN fit (RKE)
(strict SU(3) symmetry: VNN ≡ VΣ+p in the 1S0, 3P0,1,2 partial waves!)

SMS NNLO: LECs in P-waves fitted to the E40 data (two examples)!

data for (550 ≤ p ≤ 650) MeV/c are overestimated (influence of Λpπ+ threshold?)
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Preliminary results for SMS YN interactions
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Σ−p → Λn: quite well reproduced by NLO19 (NLO13) and SMS YN potentials
Σ−p → Σ−p: behavior at forward angles remains unclear

Σ−p and Σ−p → Λn data for (550 ≤ p ≤ 650) MeV/c are reproduced with comparable
quality

• no unique determination of all P-wave LECs possible
• one needs data from additional channels (Λp, Σ−p → Σ0n, ...)
• one needs additional differential observables (polarizations, ...)
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Charge symmetry breaking in the ΛN interaction

π0

δM

Λ

Σ0

Λ N

N

u
u

u
π0

δM

Λ

Σ0

Λ N

N

u
u u

η π0

δm2

Λ

Λ N

N

u u u

CSB due to Λ− Σ0 mixing leads to a long-ranged contribution to the ΛN interaction
(R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

Strength can be estimated from the electromagnetic mass matrix:
〈Σ0|δM|Λ〉 = [MΣ0 −MΣ+ + Mp −Mn]/

√
3

〈π0|δm2|η〉 = [m2
π0 −m2

π+ + m2
K + −m2

K 0 ]/
√

3

fΛΛπ = [−2 〈Σ
0|δM|Λ〉

M
Σ0−MΛ

+ 〈π0|δm2|η〉
m2
η−m2

π0
] fΛΣπ

latest PDG mass values ⇒

fΛΛπ ≈ (−0.0297− 0.0106) fΛΣπ ≈ −0.0403 fΛΣπ
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CSB in 4
ΛH, 4

ΛHe by Gazda and Gal

D. Gazda and A. Gal, NPA 954 (2016) 161: assume that

V CSB
ΛN→ΛN = −2 〈Σ

0|δM|Λ〉
M

Σ0−MΛ
τNz

1√
3

VΛN→ΣN τNz = 1(p); −1(n)

use our LO YN interaction (calculations in the no-core shell model)

450 500 550 600 650 700
Λ [MeV]

0.0

0.5
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E
Λ
 (

M
e
V

) 4

ΛH
4

ΛHe

J
P
=1

+
J

P
=1

+

J
P
=0

+

• splitting for the 1+ state somewhat too large
• fairly strong cutoff dependence

⇒ EFT: the latter signals that something is missing!
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CSB in chiral EFT

CSB (CIB) in χEFT: worked out for pp, nn (and np) scattering
Walzl, Meißner, Epelbaum, NPA 693 (2001) 663; Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362
J. Friar et al., PRC 68 (2003) 024003
LØ: Coulomb interaction, m

π0 -m
π± in OPE NLØ: isospin breaking in fNNπ , leading-order contact terms

p Λ

Λ p

K+✉ ✉
n Λ

Λ n

K0✉ ✉

✉
✉

✉
✉Λ p

Λ p

Σ+ n

π−

π− ✉ ✉
✉ ✉

Λ n

Λ n

Σ− p

π+

π+ ✉
✉ ✉

✉Λ p

Λ p

Σ− n

π+

π+ ✉ ✉
✉ ✉

Λ n

Λ n

Σ+ p

π−

π−

✉ ✉✉
Λ N

Λ N

ω ρ0

δm2
· · · ✉

Λ p

Λ p

✉
Λ n

Λ n

Gazda/Gal results: short-distance dynamics is relevant
→ one has to account for that by appropriate contact terms
(in line with the power counting)

NN 1S0: app − ann ≈ 1.5 fm
mostly due to short-range forces (ρ0-ω mixing, a0

1-f1 mixing)

Faddeev-Yakubovsky calculation for NLO13 and NLO19 interactions
with CSB forces including contact terms:
(J.H., U.-G. Meißner, A. Nogga, FBS 62 (2021) 105)
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Charge symmetry breaking in 4
ΛH-4

ΛHe
• ∆E(0+) = E0+

Λ (4
ΛHe)− E0+

Λ (4
ΛH)

= 233± 92 keV
• ∆E(1+) = E1+

Λ (4
ΛHe)− E1+

Λ (4
ΛH)

= −83± 94 keV

adjust CSB contact terms to ∆E ’s

Nov 16th, 2021


CSB contributions in ￼4ΛHe

￼11

• perturbative calculations of CSB 

• breakdown in kinetic energy, YN and NN interaction

• kinetic energy less important for chiral interactions

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the 0+

state based on 4
⇤He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
⇤ . The direct comparison of separation

energies for full calculations of 4
⇤He and 4

⇤H, �E⇤, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the

1+ state based on 4
⇤He wave functions for scenario CSB1. Same interactions and notations as

in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E⇤

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

⇤He wave functions for the evaluation of the expectation
values. Results for 4

⇤H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the ⇤p and ⇤n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the 0+

state based on 4
⇤He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
⇤ . The direct comparison of separation

energies for full calculations of 4
⇤He and 4

⇤H, �E⇤, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the

1+ state based on 4
⇤He wave functions for scenario CSB1. Same interactions and notations as

in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E⇤

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

⇤He wave functions for the evaluation of the expectation
values. Results for 4

⇤H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the ⇤p and ⇤n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

How model-dependent are predictions for the ￼  scattering length?Λn

A1 Collaboration / Nuclear Physics A 954 (2016) 149–160 159

Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

0+

1+

0+

(Schulz et al., 2016; Yamamoto et al., 2015)

(fm // keV) aΛp
s aΛn

s aΛp
t aΛn

t ∆E(0+) ∆E(1+)

NLO19(500) -2.649 -3.202 -1.580 -1.467 249 -75
NLO19(550) -2.640 -3.205 -1.524 -1.407 252 -72
NLO19(600) -2.632 -3.227 -1.473 -1.362 243 -67
NLO19(650) -2.620 -3.225 -1.464 -1.365 250 -69

CSB in singlet (1S0) much larger than in triplet (3S1)
practically independent of cutoff; same results for NLO13
without CSB: aΛp

s ≈ aΛn
s ≈ −2.9 fm

• CSB in A = 7, 8 Λ-hypernuclei, see talk of Hoai Le
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Selected results for the ΞN system

(J.K. Ahn et al., PLB 633 (2006) 214; S. Aoki et al., NPA 644 (1998) 365)
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Ξ−
p ->  Ξ0

n
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Ξ−
p ->  ΛΛ,Ξ0

n,Σ0Λ

ΞN scattering lengths [in fm]:

I = 0, 1S0 I = 1, 1S0 I = 0, 3S1 I = 1, 3S1

potential as as rs at rt at rt
NLO (500) -7.71- i 2.03 0.37 -4.80 -0.33 -6.86 -1.17 3.44
NLO (550) -7.24- i 20.79 0.39 -4.95 -0.39 -1.77 -1.15 3.80
NLO (600) -10.89- i 14.91 0.34 -7.20 -0.62 1.00 -1.13 3.95
NLO (650) -8.14- i 2.43 0.31 -9.16 -0.85 1.42 -0.90 4.27

• scattering lengths |a| . 1 fm, except for I = 0, 1S0• ΞN interaction is fairly weak

J.H., U.-G. Meißner, EPJA 58 (2019) 23
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ΞN: Comparison with HAL QCD results
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HAL QCD Collaboration (almost at physical point, mπ ≈ 145 MeV):
open circles from E. Hiyama et al., PRL 124 (2020) 092501 (no ΛΣ, ΣΣ)
filled squares from M. Kohno & K. Miyagawa, PTEP 2021 (2021) 103D04
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Nuclear matter properties
UΞ(pΞ = 0) [in MeV] at saturation density, kF = 1.35 fm−1 (ρ0 = 0.166 fm−3)

potential I 1S0
3S1 S-waves P-waves total

NLO (500) 0 −2.6 −3.3

1 12.7 −11.8 −5.0 -0.4 −5.5

NLO (550) 0 −2.9 −3.1

1 12.4 −9.5 −3.1 -0.7 −3.8

NLO (550)∗ 0 -3.15 -3.24

1 9.64 -11.0 -7.7 -1.1 −8.8

HAL QCD 0 -3.15 -5.36

1 7.12 -2.41 -4.11 - −4.11

Ehime 0 -0.80 0.47

(1.82) 1 -1.5 −8.6 −10.43 -11.4 −21.8

“traditional” value for the depth of the Ξ single-particle potential: ≈ −15 MeV

E. Friedman & A. Gal (optical potential, PLB 820 (2021) 136555): UΞ≤ −20 MeV
Y. Tanimura et al. (relativistic mean field, PRC 105 (2022) 044324): UΞ≈ −12 MeV
(from analyzing 15

Ξ C and 12
Ξ Be events)

NLO (550)∗: M. Kohno, PRC 100 (2019) 024313 (continuous prescription)

HAL QCD: T. Inoue, AIP Conf. Proc. 2130 (2019) 020002

Ehime: M. Yamaguchi et al., PTP 105 (2001) 627
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ΞN: two-particle momentum correlation functions
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Cth(k) = 1
4 C1S0

(k) + 3
4 C3S1

(k); Cα(k) ' 1 +
∫∞

0 4πr2 dr S12(r)
[
|ψ(k, r)|2 − |j0(kr)|2

]
C(k) = (a + b k) (1 + λ (Cth(k)− 1)); S12(r) = exp(−r2/4R2)/(2

√
πR)3

a, b, λ, R ... additional parameters that need to be determined (→ talk of Yuki Kamiya)

ALICE Collaboration: p-Pb at 5.02 TeV (PRL 123 (2019) 112002) pp at 13 TeV (Nature 588 (2020) 232)

R = 1.427 fm; λ = 0.513 R = 1.02 fm; λ = 1

we adopt R = 1.427 fm & 1.18 fm, respectively
(same source radii as found in corresponding fits to pp correlation functions)

(J.H., U.-G. Meißner, arXiv:2201.08238)

Y. Kamiya et al., PRC 105 (2022) 014915, using HAL QCD potential: R = 1.27 fm & 1.05 fm
Z.-W. Liu et al., arXiv:2201.04997, cov. χEFT mimicking the HAL QCD potential: R = 1.427 fm & 1.182 fm
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Summary

Hyperon-nucleon interaction within chiral EFT

ΛN-ΣN interaction within semilocal momentum-space regularized chiral EFT
confirm our previous YN results (up to NLO) based on a nonlocal regulator
successful extension to NNLO
new Σ±p differential cross sections around plab ≈ 500 MeV/c can be described
unique determination of the P-waves is not yet possible

Charge symmetry breaking within chiral EFT
regulator independent results require pertinent contact terms
CSB splittings in 4

ΛHe-4
ΛH (∆E(0+) = 233± 92 keV; ∆E(1+) = −83± 94 keV)

imply aΛp − aΛn = 0.62± 0.08 fm for 1S0 state
however, hypernuclei.kph.uni-mainz.de: 178± 55 keV; −139± 58 keV

Elena Botta, HYP2018: 140± 120 keV

ΞN interaction should be fairly weak as suggested by
the few existing experimental constraints on the ΞN cross sections
measurements of ΞN two-particle momentum correlations
lattice QCD simulations close to the physical point
light Ξ-hypernuclei (A ≥ 4) could still exist→ see talk of Hoai Le

next step: calculate 3
ΛH, 4

ΛHe, 4
ΛH, ... with inclusion of three-body forces
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