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Lattice QCD can provide complementary information for these channels



e — ———e AW\ | L —_

~ >~ — N\ N 7z = =

Lattice QCD

LQCD is a nonperturbative approach based on the
path-integral formalism, where QCD is solved on a
discretized finite volume
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Lattice QCD

LQCD is a nonperturbative approach based on the
path-integral formalism, where QCD is solved on a

discretized finite volume

There are two different approaches:
- The potential method (presented by Prof. T. Doi)
- The direct method
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Lattice QCD

With the direct method, the finite-volume energy levels are extracted from
two-point correlation functions
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With the direct method, the finite-volume energy levels are extracted from

two-point correlation functions

C1B (ta p)
CBl Bo (t7 ]_3)

Input: spatial structure of
operators with specific
quantum numbers
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With the direct method, the finite-volume energy levels are extracted from

two-point correlation functions

C1B (ta p)
CBl Bo (t7 ]_3)

Input: spatial structure of
operators with specific
quantum numbers
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Fit temporal
dependence
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With the direct method, the finite-volume energy levels are extracted from

two-point correlation functions

CB (tv p)

» \F

CBl Bo (t7 p)

Input: spatial structure of
operators with specific
quantum numbers

Fit temporal
dependence
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With the direct method, the finite-volume energy levels are extracted from

two-point correlation functions

CB (tv p)

» \F

CBl Bo (t7 ]_3)

Input: spatial structure of
operators with specific
quantum numbers

Fit temporal
dependence

>

m

Lischer’s

ethod

k™ cot o
B



——— N \ | 7 > = = |

Present status

Landscape for octet-baryon studies
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Present status

Landscape for octet-baryon studies
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S = 0 sector

Traditionally, calculations were performed with asymmetrical correlators
(different source and sink operators), leading to bound NN systems
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S = 0 sector

AN

Traditionally, calculations were performed with asymmetrical correlators
(different source and sink operators), leading to bound NN systems
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S = 0 sector

Traditionally, calculations were performed with asymmetrical correlators
(different source and sink operators), leading to bound NN systems

Are we identifying the ground state, or these are
contaminated by excited states?

Is there an operator dependence of these energy
levels?

A possible answer to these questions might be
found through a variational analysis
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD

my ~ 960 MeV

Hor N, Har pp —4—
Ha7 N, BBa7 N e
BBa7 N, BBa7 N1 —e—

aEeff

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
t [fm)]
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD

my ~ 960 MeV

Hor N, Har pp —4—
Ha7 N, BBa7 N e

+
BBa7 N, BBar N1 e

Non-hermitian matrices with hexaquark and
dibaryon-like operators

Hermitian matrices with only hexaquark or
dibaryon-like operators N
2@
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD

JG‘U ma ~ 960 MeV
E1, 27-plet 1
sl Unbound NN (*Sp)
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD

JG‘U ma ~ 960 MeV
E1, 27-plet 1
sl Unbound NN (*Sp)
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD

Dineutron channel GEVP spectrum

= Unbound NN (1S))
0.15F 7 Hermitian matrices with three operators:
o - Hexaquark
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S = 0 sector

The first variational calculations appeared in 2018 by the Mainz group,
and additional studies were performed in 2020-21 by CalLat and NPLQCD

Dineutron channel GEVP spectrum

Large interpolating-operator
depence is observed 015l

Energy levels disappear when the @

operator with the corresponding 0.10

larger overlap is removed T |°¢
k5
iwis <
0.05|
N

0.00
Are we still missing operators?

S0 Sp S Se Se So Se Se Se

Interpolating-operator set
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Are we missing operators?

Option a) There is a deep-bound state, but the current operators have
a small overlap
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Are we missing operators?

Option a) There is a deep-bound state, but the current operators have
a small overlap

- [A’B]

- [B7B]

0 100 200 300 400 500
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Are we missing operators?

Option a) There is a deep-bound state, but the current operators have
a Sma” Overlap Amarasinghe et al. [NPLQCD], arXiv:2108.10835 [hep-lat]
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Are we missing operators?

Option a) There is a deep-bound state, but the current operators have
a small overlap

0 100 200 300 400 500 0 100 200 300 400 500
t t

Option b) There is no deep-bound state, however...
Volume independence of the ground state
Analysis of the phase-shifts and checks on scattering parameters
Consistency in scalar ME extraction between different methods

Agreement with large-Nc¢ predition of an SU(6) symmetry

Agreeing values for the magnetic moments and np — d-y cross section
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Are we missing operators?

Symbiotic relationship between LQCD and EFT

Constrain 2 and 3-body nuclear forces, compare 4-body system as a
check, and predict larger nuclei

my, ~ 806 MeV
OF nn 7 — EFT
o —_ LQCD
| 3He 4H
~501 B © SLi "He ]
2 , o
2. 100} | |
mi L
_150]
Match Verify Predict
-200r

Extensions to 160 and 49Ca
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Are we missing operators?

Symbiotic relationship between LQCD and EFT

Constrain 2 and 3-body nuclear forces, compare 4-body system as a
check, and predict larger nuclei

m, ~ 806 MeV
0F nn 7 — EFT
o i LQCD
L 3He 4H
_50k B © °Li "He
L 6Ll
& , .
2. 100/ s s
mi L
~150}
Match Verify Predict
-200+

Extensions to 160 and 40Ca — Possible to do the same with hypernuclei
once AN and ANN are extracted

10
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Are we missing operators?

Option c) These discrepancies arise from lattice spacing effects

With the direct method, only NPLQCD had performed calculations of the H-
dibaryon channel unitl 2018 (the others were performed by HALQCD)

—> first application of
variational approach to BB

o 3 (with only dibaryon-like operators)

0

11
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Are we missing operators?
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Option c) These discrepancies arise from lattice spacing effects

With the direct method, only NPLQCD had performed calculations of the H-
dibaryon channel unitl 2018 (the others were performed by HALQCD)

802— 3

60 @
;:402- % i & &
R 90t 0

i %’\

00 02 N4 06 08 10 12 14

first extrapolation to the
continuum for BB systems

‘ ]G‘U —> first application of

variational approach to BB
(with only dibaryon-like operators)

~30 - I
> { a = 0.099 fm
20 - ‘
& |a=0.039f% h—
10 - g
t ¢

0.000 0.002 0.004 0.006 0.008 0.010
a® (fm?) »



.

a=0.123 fm
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Option c) These discrepancies arise from lattice spacing effects

With the direct method, only NPLQCD had performed calculations of the H-
dibaryon channel unitl 2018 (the others were performed by HALQCD)
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first extrapolation to the
continuum for BB systems

‘ ]G‘U —> first application of

variational approach to BB
(with only dibaryon-like operators)

~30 - I
> { a = 0.099 fm
20 - ‘
& |a=0.039f% h—
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Summary

We can use LQCD to reach systems that are difficult for experimentalists
(like strange systems)

It is still not clear what the best operators are to include in a variational
analysis for two-baryon systems

Ongoing study with additional operators and additional volumes at
m_~ 806 MeV

Starting production for different baryon-baryon systems closer to the
physical point (m, ~170 MeV) with different volumes

Beyond spectroscopy, matrix elements relevant for current experiments
are being pursued (momentum fraction, g-decay and ps-decay, scalar and
tensor ME,...)

12
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Are we missing operators?

Option a) There is a deep-bound state, but the current operators have
a small overlap

Toy model:  Z!4) = (¢, /1 — €2,0) Z(B) = (€,0,1/1 — €2)

E(()AB) _p— A E§AB) o EéAB) )

)\éAB) _ 6—(t—t0)n[1 4 62(6tA o etoA) 4 0(64)]

)\gAB) _ 6—(t—t0)(n—|—5)[1 4 62(675(A—|-5) o eto(A+5)) 4 0(64)]

14
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Are we missing operators?

1

|

Option b) There is no deep-bound state, however...

_ 2464 NN(*Sp)
= 244
To2ap T
& =& :‘I o W L=32
238" m, ~ 806 MeV B L=48
4 6 8 10 12 14

Volume independence of the ground state

OB;mrA —OgA — AO—T(']?

Direct Feynman-Hellmann §

calculation approach 2

d | —7(14) —9.1(6.0) 3%;
3He | —40(22) | —50.8(11.8) =

Consistency in scalar ME extraction

k* cot 6 [L.u.]

(v (5, E
: : 24% x 64 : d = (0,0,0) d = (0,0,2)
5 § 322 x96: =0= d=(0,0,00 == d=(0,0,2)
| . | 48°x96:  —o= d=(0,000 == d=(0,02)
;i ________ ) 5 Two-parameter ERE
i | Tangent to —v/—k*2 at —r(>)?
L ™ 450 Mev 13 - —V/—k*? =+ t-channel cut

—0.01 0.00 0.01

k*2 [Lu]

Analysis of the phase-shifts and
checks on scattering parameters

4 °H
p
. d
| =
E 0
e we

Magnetic moments of light nuclei

15
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Are we missing operators?

Option b) There is no deep-bound state, however...

Scattering parameters > EFT matching
27 10 10 84

% 0.8/ 2'05 ®
2 0.6/ ': 15!
% s 04 $ % ¢ NS
o0 = 02 'T' 10:

% 00 1 ° osl

S —02} ;

g oo P \J o ? ®

NERE 2 3 2 3 2 3 2 3

T ol ftgtgpld i

= | —

% §—0.5:— cEIEm 5

3"‘ —1.02—" - ol 1 H

. —1.55— _ ° { “ H
E 205'1' U | 10 84 -5

NSRS DU C1 C2 C3 Cq Cs Ceé
1

Agreement with large-Nc predition of an SU(6) symmetry, and a larger SU(16)
symmetry predicted by the conjecture that entanglement is minimized in low-
energy processes
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Studying the BB interaction
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m, ~ 450 MeV
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A total of 12 kinematic
points per system

Not all systems show
negative ground-state
energies
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Studying the BB interaction

NPLQCD ny =3 (m, ~ 806 MeV)
NPLQCD ny =2+1 (m, ~ 450 MeV)

Linear extrapolation in m

Quadratic extrapolation in m,
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Matrix elements for nuclear physics
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Extraction of the momentum fraction of u —d in
light nuclei

It can help constrain current experimental values,
showing the potential for future calculations
closer to the physical pion mass
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The axial charge of the triton can be
extrapolated to the physical point

Pionless EFT was used to extrapolate the
finite-volume lattice result to infinite
volume



