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Phase diagram of strongly interacting matter
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Phase diagram of strongly interacting matter
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Abstract

One of the primary goals of nuclear physics is to understand the force between nucleons,
whichis a necessary step for understanding the structure of nuclei and how nuclei
interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large
body of knowledge about the nuclear force that has since been acquired was derived
from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have
been discovered' and their masses measured, little is known directly about the nuclear
force between antinucleons. Here, we study antiproton pair correlations among data
collected by the STAR experiment? at the Relativistic Heavy lon Collider (RHIC)?, where
goldions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon
pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to
study details of the antiproton-antiproton interaction. By applying a technique similar
to Hanbury Brown and Twiss intensity interferometry*, we show that the force between
two antiprotons is attractive. In addition, we report two key parameters that characterize
the corresponding strong interaction: the scattering length and the effective range of the
interaction. Our measured parameters are consistent within errors with the
corresponding values for proton-proton interactions. Our results provide direct
information on the interaction between two antiprotons, one of the simplest systems of
antinucleons, and so are fundamental to understanding the structure of more-complex
antinuclei and their properties.
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Abstract

One of the key challenges for nuclear physics today is to understand from first principles the
effective interaction between hadrons with different quark content. First successes have
beenachieved using techniques that solve the dynamics of quarks and gluons ondiscrete
space-time Iatticesl'z. Experimentally, the dynamics of the strong interaction have been
studied by scattering hadrons off each other. Such scattering experiments are difficult or
impossible for unstable hadrons>*>® and so high-quality measurements exist only for

hadrons containing up and down quarks7. Here we demonstrate that measuring

correlations in the momentum space between hadron pairss'g'm'u'12

producedin
ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides
aprecise method with which to obtain the missing information on the interaction dynamics
between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of
baryons containing strange quarks (hyperons). We demonstrate how, using precision
measurements of proton-omega baryon correlations, the effect of the strong interaction
for this hadron-hadron pair can be studied with precision similar to, and compared with,
predictions from lattice calculationsB'M. The large number of hyperons identified in
proton-proton collisions at the LHC, together with accurate modelling15 of the small
(approximately one femtometre) inter-particle distance and exact predictions for the
correlation functions, enables a detailed determination of the short-range part of the
nucleon-hyperon interaction.



Heavy-Ion collision and the femtoscopy method
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Correlation femtoscopy
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Size: ~10-15m (fm)
Time: ~10-23 s

Impossible
to measure directly!




Correlation femtoscopy

Size: ~10-15m (fm)
Source .
(x Time: ~1023 s

.

Impossible
to measure directly!

Femtoscopy (HIC) inspired by
Hanbury Brown and Twiss
interferometry method
(Astronomy)

but!

- different scales,

- different measured quantities

- different determined 9
quantities




Traditional and non-traditional femtoscopy
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Femtoscopy (known as HBT):
the method to probe geometric and dynamic properties of the source

P Space-time properties (10719m, 1072%s) can be
P determined due to two-particle momentum
correlations that arise due to:

R Quantum Statistics (Fermi-Dirac, Bose-Einstein);

Final State Interactions (Coulomb, strong)

determined assumed measured

Senl(k*
Ck*, r) = [S(r*) | W(k*, r) |2d3r * — L()
Bckg(k*)

S(r+) - emission function

W(k*,r*) _ two-particle wave function (includes e.g. FSI interactions)

Sgnl(k*)

—— - correlation function
Bckg(k*) 10



Traditional and non-traditional femtoscopy
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If we assume we know the , measured
can be used to determine of

P1 Space-time properties (10719m, 10723s) can be
P determined due to two-particle momentum
correlations that arise due to:

R Quantum Statistics (Fermi-Dirac, Bose-Einstein);

Final State Interactions (Coulomb, strong)

assumed determined measured

Senl(k*
Ck*, r) = [S(r*) | W(k*, r) |2d3r * — L()
Bckg(k*)

S(r+) - emission function

W(k*,r*) _ two-particle wave function (includes e.g. FSI interactions)

Sgnl(k*)

—— - correlation function
Bckg(k*) =



Traditional and non-traditional femtoscopy

C(k*,r*) = JS(;»*) Pk, 7)) > d3r * =

Sgnl(k*)
Bckg(k*)

12



Traditional and non-traditional femtoscopy
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Interaction .
\ \ ------ Repulsive

—— Attractive
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V
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Senl(k*)

_ 2 13 % —
Clk*,r%) = JS(r*>I‘P<’<*”’*)' 4= Bekg (o)

Object of study of

traditional femtoscopy Object of study of

non-traditional femtoscopy
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Traditional and non-traditional femtoscopy
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a) Proton Femtoscopy @200 GeV

So far, the knowledge on nuclear force was derived from studies
made on nucleon or / and nuclei.

Nuclear force between anti-nucleons is studied for the first time.
The knowledge of interaction between two anti-protons is

fundamental to understand the properties of more sophisticated
anti-nuclei.

16
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a) Strong interactions between anti-nucleons
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a) Strong interactions between anti-nucleons

—
- O proton-proton * fo and do for the antiproton-antiproton
6 ] proton-neutron(singlet) . . . .
¢ neutron-neutron for the proton-proton interaction.
% antiproton-antiproton
= 41 Nature 527, 345-348(2015) * Descriptions of the interaction among
== | antimatter (based on the simplest systems of
o° | ¢ O anti-nucleons) determined.
21 X
| B * A quantitative verification of matter-antimatter
) symmetry in context of the forces responsible
o-—+—r L for the binding of (anti)nuclei.
-10 0 10 20 30
f, (fm)

The scattering length fo: determines low-energy scattering.

The elastic cross section, o., (at low energies) determined solely by

the scattering length, ,ll_% oe = 4m f§

do - the effective range of strong interaction between two particles.

It corresponds to the range of the potential in an extremely simplified scenario - the square well

potential.
fo and dg - two important parameters of strong interaction between two particles.
p p g p

Theoretical correlation function depends on: source size, k* ,fo and do. 18



b) Y-N and Y-Y interactions

Experiment: Studies Y-N and Y-Y interactions in progress
Theory: Major steps forward have been made (Lattice QCD).

Numerous theoretical predictions exist, but no clear evidence for any such bound states,
despite many experimental searches.

The existence of hypernuclei is confirmed by attractive strong Y-N interaction ->
indicates the possibility to bind Y to a nucleus.

The measurement of the Y-N and Y-Y interactions leads to important implications for the
possible formation of Y-N or Y-Y bound states.

A precise knowledge of these interactions will have impact to the physics of neutron
stars.

The structure of the neutron stars cores is still unknown, hyperons can appear there
depending on the Y-N and Y-Y interactions.

19



c) Strange Baryon Correlations (Including A Hyperons)
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c) Strange Baryon (A) Correlations at HADES

understanding of hyperon-nucleon interactions.

I — e ——
:::: o CAk=C__KIC_ (K ::i: 3; Phys. Rev. C 94, 025201
2= " Cucll) i #
1.8%7 v Croulk) o 18- o 25:0_
_& 15 : T b = , g
S 1ty O =< f
° 1.2- % 1.22— (&) 1'5::_
15--Ng T O L AEENADE S :
08> Phys. Rev. C 94, 025201 = Jomemsemeeeeeeeeemenecans I
06— | ; o.e; , , . -
35 o CA=C__Kic_TK afl Phys. Rev. C 94, 025201 % 50 100 150 200
E " Cucl) = k [MeV/c]
25— | Cinclk) 'i‘e'xp' o 25
S e g i LO scattering parameters
°. ' _ s NLO scattering paremeters
gt PR PP it 4 S By 1: o oo
> Ly ) [:\7'0 v 150 200 SI parameterS'
k [MeV/c] evie _
2 Lednicky’s fit ;SM(;O 229718fm
C (k) . meas( ) O,NLO — = fm
P == ® onro = 1.54fm
o _LRC 5 ds3 o = 2.72fm
§=0 _
Joro = 1.91fm
The femtoscopy technique to study interactions between dg 1(()) = 1.40fm
particles can be applied to many colliding systems at very f57L = 1.23fm
different energies, which can help to improve the d5=L = 2.13fm
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c) Strange Baryon Correlations (including p-£2)

0-40%
Model:R; =R, =5fm L

40-80%

Model:R, =R, = 2.5 fm | 4
Fo=fa Au+Au |5, = 200 GeV

A pPosPT

O pasrmiee)

®  pPO.PTI(PPLSC)
_—,
-,

—

(b)

PklwyS.LeH.B 790 (2019) 490
0.2

0.1

k* (GeV/c)

A comparison of the measured correlation

functions from Au+Au collisions with theoretical
predictions
Scattering length is positive and favor p-Q) bound
state hypothesis

Clk*)

I L) Ll T T I L
35k -
8] ALICE data P-= 3
3 B coulomb -
" Coulomb + p-= HAL QCD ]
25 - Coulomb + p-Q~ HAL QCD elastic .
- Coulomb + p—Q~ HAL QCD elastic + inelastic E
2 -
15 -
S
L :
[
i
7 -]
P-4
6 =
1.2 ]
5 _ E
< | :
4 S -
3 o8 . =
100 200 ]
2 k* (MeV/c) _:
H
300

200
k* (MeV/c)




c) Strange Baryon Correlations (including p-Z)
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First measurement of p-Z correlation in Au+Au collisions at RHIC
Feed-down correction not included yet.

p-E correlation shows enhancement above Coulomb interaction

Large uncertainties due to limited proton-Z pairs at low energy

Modeled by hadronic transport model UrQMD + an afterburner, model results

Au+Au collisions @ 3 GeV; 0 - 60% centrality

22 77 l ' I ' l ' ! '
B Au+Au collision @ ys, =3 GeV
L @ p-Z,0-60% |

181 -+=+- Gaussian source fit H

r, = 3.5+2.4 (fm)

UrQMD+CRAB
STAR Preliminary

C(k*)

23
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c) Strange Baryon Correlations (Including = Hyperons)

O —

First measurement of
correlation in Au+Au collisions.

Lattice QCD/chiral EFT
calculations indicate an
attractive interaction, but not
strong enough to form a bound
state

The result shows anti-
correlation at Q < 0.25 GeV/c.

Combination of quantum
statistics, strong interaction, and
Coulomb interaction.

Feed-down and Coulomb effects
need to be evaluated for further
discussion.
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d) Neutral kaons

T ———
Kaon correlation functions are sensitive to:
K*K® KK KIK*
Quantum Statistical effects | Quantum Statistical effects | Final State Interaction
(QS) (QS) (FSI)
Final State Interaction (FSI) | Final State Interaction (FSI) | - strong interaction (SI)
- Coulomb interaction - strong interaction (SI)
(COUL)




d) Neutral kaons See D. Pawtowska talk
- e ——

Kaon correlation functions are sensitiveoto(:)
+ +,+ +
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1.5— ’I’I/,l | -_
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d) Neutral kaons
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Kaon correlation functions are sensitive to:
+og 010 01+
K™K KsKs KIK
( S ( s r . S FSI
2 * Al effects 2ig Al effects 1.04 trong
* QS effects * QS effects L
”""’a,,o « Coulomb FSI sl « Strong FSI 1.02-
A" ) | R 27 =2t ) g,
(“{; \\\\\\\“\\nwlml/f/% . Zus‘ : mnv (L.L) I
— I""’l""""/lllllnm“ " . ) ! 0.98
A
r \“u““““ o o 2 \ . ..
-« Theoretical prediction Theoretical prediction oo Theoretical prediction
L. L L | X T I - R P o X I T S Y E—vt
. 0.05 0.1 q, [GeVic] k* [GeV/c]
k*[GeVic]

Kaons can provide complementary information to pions: contain strange quarks
(larger production of strange particles is one of the signatures of QGP)

- less affected by the feed-down from resonance decays

- smaller cross section on reaction with the hadronic matter

Very interesting:

- compare femtoscopic results for all possible kaon combination
+ + 20 0 10 +

(K* - K*, K¢ — K{,KJ — K%);

-K g could be a 4-quark state



d) Neutral kaons See D. Pawtowska talk
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KIK? STAR Preliminary KIK? STAR Preliminary I KIK? STAR Preliminary
Au+Au collisions Au+Au collisions Au+Au collisions
@ 200 GeV, 0-10% @ 200 GeV, 10-70% @ 200 GeV, 0-70%
0.4 GeV/c< pr < 2.0 GeV/c 0.4 GeV/c< pr<2.0GeV/c 0.4 GeV/c< pr<2.0GeV/c
Inl <0.5 Inl <0.5 In|l <0.5
M IR P PR S STRR NT S S ST N S S S SR SR S SN S S PRI SR S N ST S SR S SN ST ST ST SR S S S S
0.2 0.3 0.40 0.1 0.2 0.3 0.40 0.1 0.2 0.3 0.4
- [GeV/c] q,., [GeV/c] q,., [GeV/c] o
RSV ) -

The strong final-state interaction has a significant effect on the neutral kaons

correlation due to the near-threshold f,(980) and a,(980) resonances



d) Neutral kaons

e

KIK? STAR Preliminary
Au+Au collisions

@ 200 GeV, 0-10%

0.4 GeV/c< pr < 2.0 GeV/c

KJKJ

STAR Preliminary
Au+Au collisions
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@ 200 GeV, 0-70%

KJKy
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© A T @ 200 GeV, 0-10% (©] @ 200 GeV, 10-70% © i @ 200 GeV, 0-70%
r — Antonelli —— Antonelli — Antonelli
0.9~ —— Achasov2001 0.9 —— Achasov2001 0.9 —— Achasov2001
[ —— Achasov2003 I —— Achasov2003 [ —— Achasov2003
[, . . . . J— Martin ocl . .. |— Martin e i |7 Martin
08% 01 02 03 04 08y gy 02 03 o4 OB 01 02 03 04
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The ay(980) FSI parametrization gives very good representation of the shape of the signal region in CF
The parametrization with the larger a;(980) mass and decay coupling gives larger size of the source

Antonelli parametrization favors ay(980) resonance as a tetraquark



d) Neutral kaons
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The aO (980) FSI parametrization gives very good representation of the shape of the signal region in CF

The parametrization with the larger a;(980) mass and decay coupling gives larger size of the source
Antonelli parametrization favors ay(980) resonance as a tetraquark



e) Light nuclei formation at 4 /sy = 3 GeV
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f) Nonidentical particle correlations

e __—— e —
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e) Nonidentical particles - emission asymmetry
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e) Nonidentical particle correlations
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Summary



Summary

Descriptions of the interaction among antimatter (based on the simplest systems
of anti-nucleons) determined.

A quantitative verification of matter-antimatter symmetry in context of

the forces responsible for the binding of (anti)nuclei.

Scattering length is positive and favor A — A bound state hypothesis

Scattering length is positive and favor p — Q bound state hypothesis

* Searched for 2 — = bounds states have started

* Antonelli parametrization of K g — K* strong interactions favors a,(980)
resonance as a tetraquark

d-d CF described better by the model including coalescence

Light nuclei are likely to be formed via coalescence

Heavier directed towards edge of the source and /or ...

* Heavier particles freeze-out earlier @ @
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Summary

Descriptions of the interaction among antimatter (based on the simplest systems
of anti-nucleons) determined.

A quantitative verification of matter-antimatter symmetry in context of

the forces responsible for the binding of (anti)nuclei.

Scattering length is positive and favor A — A bound state hypothesis

Scattering length is positive and favor p — Q bound state hypothesis

* Searched for 2 — = bounds states have started

* Antonelli parametrization of K g — K* strong interactions favors a,(980)
resonance as a tetraquark

d-d CF described better by the model including coalescence

Light nuclei are likely to be formed via coalescence

Heavier directed towards edge of the source and /or ...

* Heavier particles freeze-out earlier @ @

Thank you for Your attention
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e) Program Beam Energy Scan

Early Universe The Phases of QCD  [RAESlEs et
LHC Experiments p—|—p, p—l—A], p—I—Au, d+Au,

3He+Au, Cu+Cu, Cu+Au,
Ru+Ru, Zr+7Zr, Au+Au, U+U
QCD at high energy
density/temperature
Properties of QGP, EoS

Temperature

Beam Energy Scan

Au+Au 7.7-62 GeV

QCD phase transition

Search for critical point
PO Turn-off of QGP signatures

Supercoﬁductor

Critical Point

Hadron Gas

Nuclear / Fixed-Target Program
Vacuum Matter Neutron Stars

P e = Au+Au =3.0-7.7 GeV

900 MeV High baryon density regime

Baryon Chemical Potential .
with 420-720 MeV 1




How to measure a phase transition?

R (fM)

et | anxiv:2007.14006v4
i PRC103, 034908 (2029)
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Clear evolution in the freeze-out shape indicated

Lower energies: system more oblate (R4, > Rj,,,)

Higher energies: system more prolate (R, < Rj,p,)
\/Snn = 4.5 GeV: round system (Ry;4, = Rj,,0)

Transition region between dynamics dominated
by stopping and boost-invariant dynamics.
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How to measure a phase transition?

arXiv:2007.14005v4; PRC103, 034908 (2021)
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Theoretical attention from hydro and transport models needed 1
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How to measure a phase transition?
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Pre-thermal phase —— Hydrodynamical phase — Hydronic cascades

UrQMD vHLEE UrQMD
vHLLE (3+1)-D viscous hydrodynamics
[u. Karpenko, P. Huovinen, H.Petersen, M. Bleicher

VHLEE-I—UI‘QMD model Verify sensitivity of HBT Phys.Rev. C 91, 064901 (2015), arXiv:1502.01978,1509.3751

measurements to the first-order phase transition . . Bag Model — 1% order PT

PE Kolb, et al, PR C 62, 054909 (2000)

Chiral EoS — crossover PT (XPT) 42
J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)



b) Strange Baryon Correlations (Including A Hyperons)
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