Newly completed JLab experiment (E12-17-003):

Determine the unknown Λn interaction by investigating the possible Λnn resonance

Liguang Tang Hampton University / JLAB

On behalf of the JLab Hypernuclear and Hall A collaborations

<u>Publications</u>

- "The cross-section measurement for the ³H(e, e'K⁺)nnΛ reaction", K. N. Suzuki, T. Gogami, B. Pandey, K. Itabashi, S. Nagao, K. Okuyama, et al., Prog. Theor. Exp. Phys. 2022 013D01.
- "Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states using the $(e, e'K^+)$ reaction with a tritium target", B. Pandey, L. Tang, T. Gogami, K. N. Suzuki, K. Itabashi, S. Nagao, et al., Phys Rev. C **105**, L051001 (2022).

INTRODUCTION

- Experimental data from study of hypernuclei have so far made significant contributions in acquiring indirect or supplemental information on the ΛN interact.
- → However, the standing puzzles, such as Charge-Symmetry-Breaking
 (CSB) urges us to obtain more direct ΛN interaction data.
- Suggested by the HypHI result, the possible neutral *Ann* system (if it exists) may be unique to determine the unknown *An* interaction experimentally. This was the motivation of the JLab experiment E12-17-003.

^{*} Iraj R. Afnan and Benjamin F. Gibson, Phys. Rev. C 92, 054608 (2015)

THE JLAB EXPERIMENT E12-17-003

Advantages and Opportunity

- Production: ${}^3H(e, e'K^+)(\Lambda nn)$ reaction. It is the best for searching the Λnn state by precision mass spectroscopy.
- Tritium target already exists in JLab Hall A for four other approved experiments, providing a unique opportunity.

Disadvantages and Unfortunates

- The existing standard HRS-HRS configuration was not optimized for the $(e,e'K^+)$ reaction, $-Q^2 \approx 0.5$ (GeV/c)² and $q_A \ge 400$ MeV/c.
- No knowledge of the photo-production cross section available and the available beam time was limited.
- Available detector system has only limited power to reject the background π^+ and p.

EXPERIMENT E12-17-003 IN HALL A

HRS path-length: 26 meters

L-HRS: Scattered electrons (e')

R-HRS: Reaction kaons (K+)

Beam Energy: 4.319 GeV

Cylindrical gas target: 25 cm

Data were collected with two different kinematic conditions:

H Kinematics: H target

 $P_{K} = 1.8231 \text{ GeV/c } @13.2^{\circ}$

 $P_{e'} = 2.1000 \text{ GeV/c } @13.2^{\circ}$

Producing both Λ and Σ^0 for kinematics calibration

T Kinematics: T and H targets

 $P_{K} = 1.8231 \text{ GeV/c } @13.2^{\circ}$

 $P_{e'} = 2.2180 \text{ GeV/c } @13.2^{\circ}$

Obtain the Λnn mass spectroscopy from T_2 and reference Λ from H_2 targets

DIFFERENCE OF THE TWO KINEMATICS

Using the known masses of Λ and Σ^0 to ensure high precision on the absolute missing mass scale (systematic uncertainty of the binding energy of the Λnn resonance)

ANALYSIS RESULTS – *Z-vertex & Coincidence time*

- √ 25 cm gas cell target
- ✓ Z-vertex resolution: $\sigma_7 \approx 4.5 \text{ mm}$

- ✓ Inefficiency of aerogel detectors
- ✓ Accidentals from π^+ and p.

ANALYSIS RESULTS - Energy Cal. & Momentum Matrix Opt.

- \Leftrightarrow Events from Λ and Σ^0 (H) and $^{27}_{\Lambda}$ Mg (Al caps) for momentum matrix optimization
- \diamond Known mass of Λ and Σ^0 provides the absolute energy/ mass calibration
- ♦ Heavy ²⁷ Mg events improve the momentum matrix optimization

ANALYSIS RESULTS – Λ/Σ⁰ Spectrum

- Data collected under both H and T kinematic conditions
- ♦ Resolution reached to the optimum as the simulation indicated
- \triangle Δ M = 76.94 MeV/c² (nominal: 76.96 MeV/c²)

ANALYSIS RESULTS – H Contamination in T

- T data analyzed with the H kinematics
- \diamond ~158 counts of free \land , correspond to \approx 3% H contamination
- \Leftrightarrow Expect a free \land peak in the \land nn spectrum with large width

ANALYSIS RESULTS – Λnn Spectrum

Although no definite identifications could be made, enhancements at both the Λ nn and Σ NN thresholds are highly interesting

ANALYSIS RESULTS – Possible YNN Resonances

- Possible *Ann* resonance:
 - $-B_{\Lambda} = 0.18 \pm 0.44 (stat) \pm 0.4 (sys)$
 - $\Gamma/2 = 0.35 \pm 0.42 (stat) \pm 0.5 (sys)$
- Significance: ~2.2. If real, cross section ≈ 10 nb/sr)

- Possible bound $\Sigma^0 nn$ state (1st):
 - $-B_{\Sigma 0nn} = -3.14 \pm 0.84 \text{ (stat)} \pm 0.4 \text{ (sys)}$
- 2nd peak is about 13 MeV away
- Cross sections (1st/2nd) ≈ 20/45 nb/sr

SUMMARY

- \Leftrightarrow E12-17-003 has proven the uniqueness of using the (e,e'K⁺) reaction at JLab.
- The experiment had possible observation of the Λnn resonance and a bound (A = 3) ΣΝΝ state.
- Obtained statistics is too low to allow a definitive identification, information is not precise enough to determine the Λn and Λ-Σ interactions.

♦ The new proposal was conditionally approved.