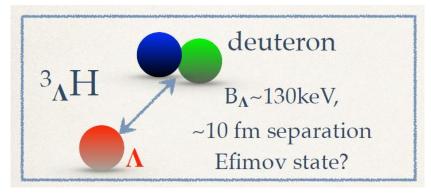
2022.6.19 HYP2022


Hypernuclear physics overview: Highlights from running experiments and perspectives

H. Tamura Tohoku University /JAEA

Hypertriton and $nn\Lambda$ S=-2 systems **YN** scattering **Contents:** Femtoscopy Kaonic nuclei Future directions and Facilities Blue text: Tamura's personal comments **Apologies:** Experimental point of view. Not a summary. Covering only some part of the plenary talks. Sorry.

Hypertriton and $nn\Lambda$

The smallest bound system has particular importance Test of YN Interaction via exact calculations

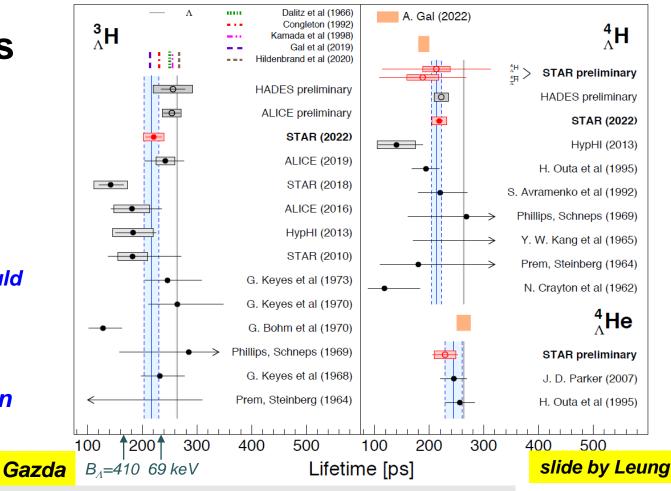
We long believed: B_{Λ} ~130 keV $\Leftrightarrow \tau \sim \tau_{\Lambda(\text{free})}$ (263 ps) looks consistent

High quality hypertriton data are MUST for our field, but it was not seriously recognized (by experimentalists) before.

Importance is noticed since HypHI /STAR reported shorter lifetimes (2013)

Topical sessions in HYP2015@Sendai Hypertriton lifetime YN scattering

Hypertriton: New data (after 2018) and prospect


	Exper	riment	Reaction	Measurement	τ (³ _Λ H)	τ (⁴ _Λ H)	$B_{\Lambda}({}^{3}{}_{\Lambda}H)$
L	<mark>.eung/Kis</mark>	<mark>el</mark> STAR	HI (Au+Au) √s=3GeV	decay length inv. mass	142+24-21±29 221±15±19	218±6±13	$0.41 \pm 0.12 \pm 0.11$ under analysis
	Puccio	ALICE	HI (Pb+Pb) √s=5TeV	decay length inv. mass	242+34-38±17 New data (prel)	preliminary	preliminary ~ 0.05
	Spies	HADES	HI (Ag+Ag) √s=2.55GeV	decay length	256±22±36 (preliminary)	222±8±13 (preliminary)	
	Saito W/	ASA-FRS	HI (⁶ Li+ ¹² C) 2GeVA	decay length	under analysis	under analysis	under analysis
		ARC E73	³ He(Κ ⁻ ,π ⁰)	decay time	test data taken run soon later	190±8±?? (preliminary)	-
	Saito	MAMI	⁷ Li(e,K ⁺)	decay pion momentum	-	-	run soon $\Delta M \sim \pm 0.02$
	J-P	ARC E07	K ⁻ on	decay time	under analysis	later	under analysis
	Nakamura 🛛		emulsion	decay energy			
	JLab E1	2-19-002	³ He(e,e'K+)	missing mass	-	-	approved

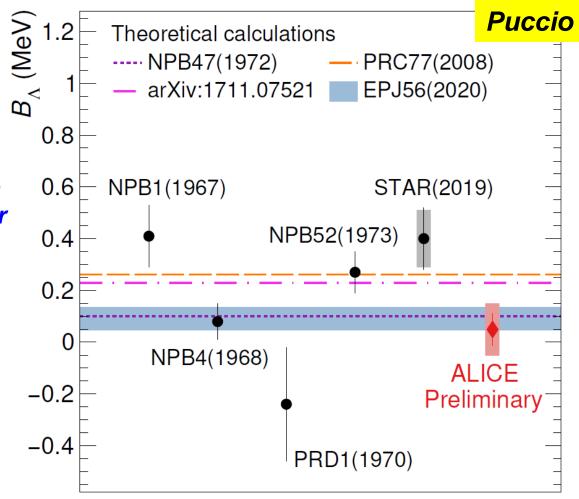
Present status of lifetimes

Great efforts to improve the data.

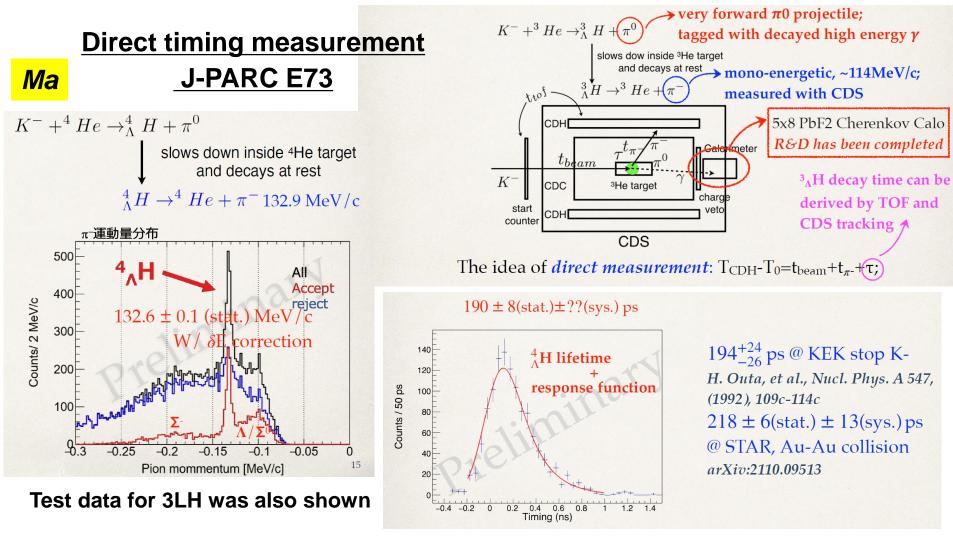
Psychological bias may comes in... All experimentalists should be very careful .

Precise data via different methods than HI are necessary.

[A. Pérez-Obiol, DG, E. Friedman, A. Gal, Phys. Lett. B 811, 135916 (2020)]

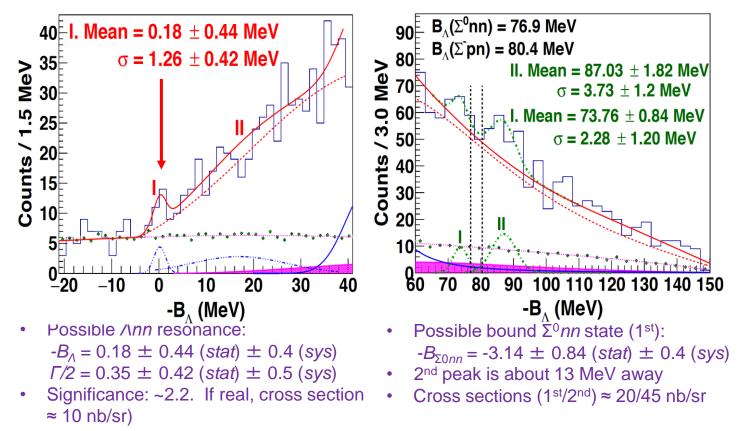

$B_{\Lambda}(^{3}{}_{\Lambda}H)$

Still unclear

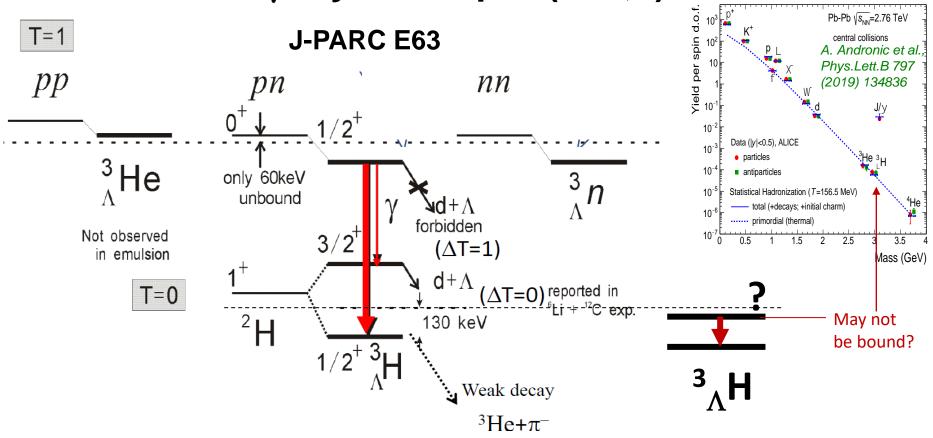

May be difficult to go down to a sub 100keV systematic error in the invariant mass method

Decay pion at MAMI

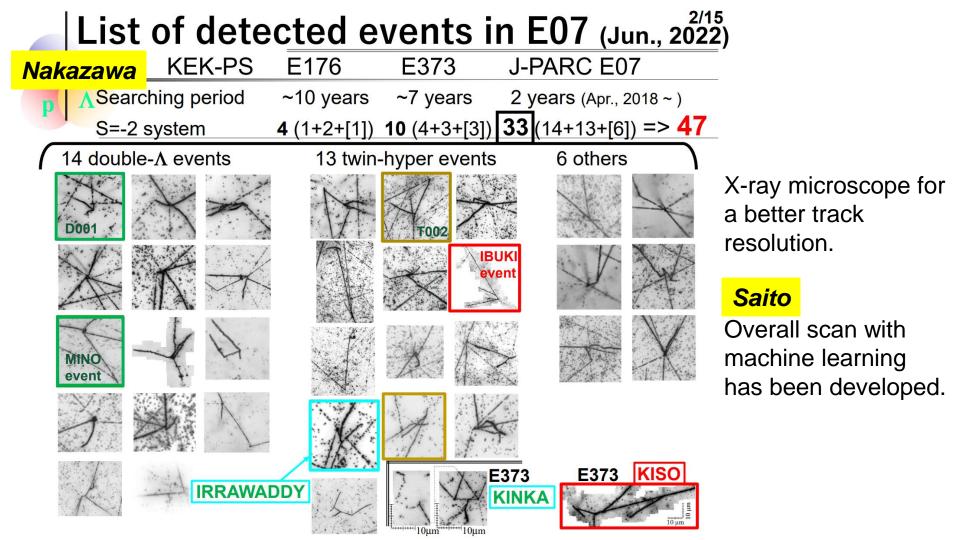
Emulsion analysis from J-PARC E07 seem promising.

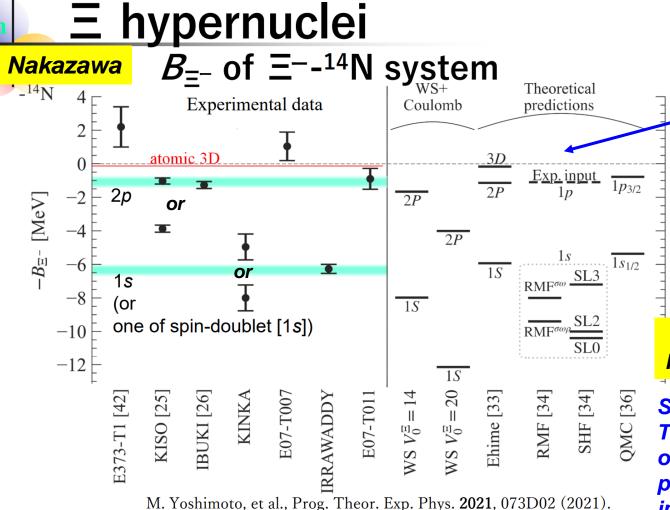

Paper out in few weeks!

<u>³H(e, e'K⁺) "Λnn" at JLab Hall A (E12-17-003)</u>


Tang

Ann state? Not significant but a re-measurement is necessary.



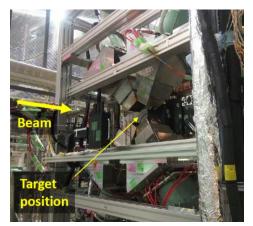

Ukai

Possible γ -rays from pn Λ (T=1,0)

S=-2 systems

Caution: Theories seem to agree with the data, but they used the BNL suggestion of $U_{\pm} \sim -15 MeV.$

Ξ survives until it cascades down to the 0s orbit ??

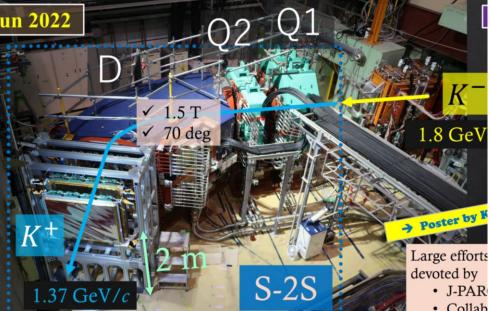

Hiyama, Schulze, Friedman(Gal), Tanimura

S=-2 data are still limited. Theoretical interpretations of the data and theoretical predictions are quite important.

<u>More efforts for E-nuclear systems</u>

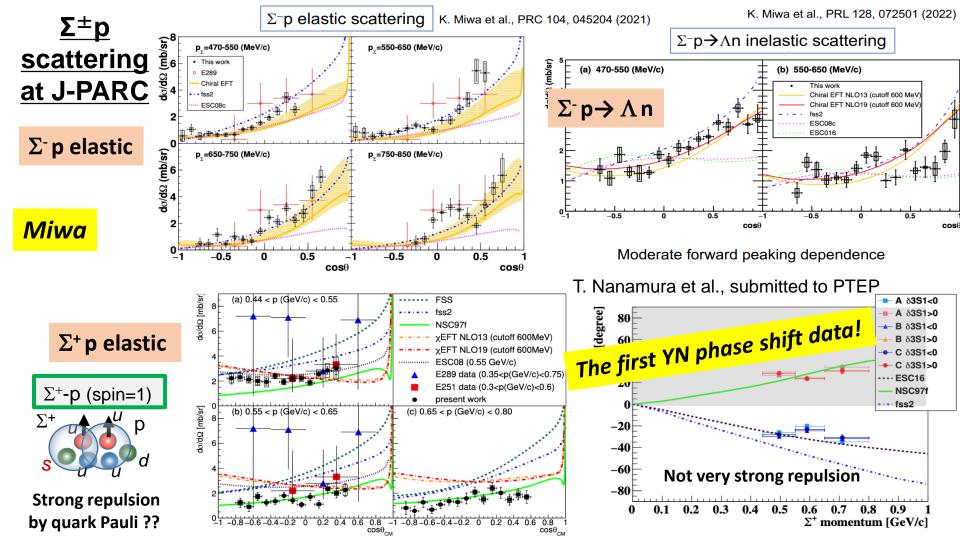
Yamamoto

E-atomic X-ray measurements started. E07: E-Ag/Br with emulsion E03: E-Fe ----X-rays not observed yet.

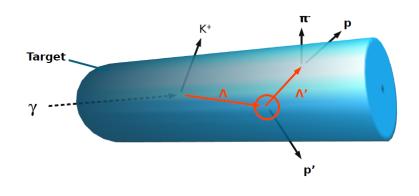


Gogami, Fujioka

Ξ-hypernuclei via (K-,K+) reaction

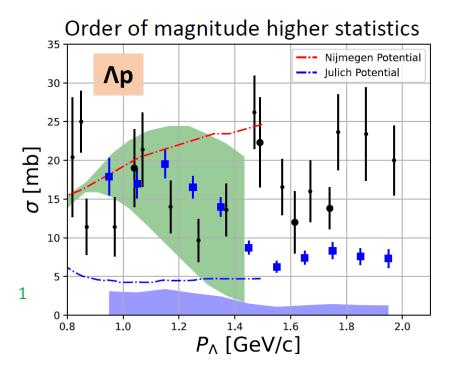

E70: ${}^{12}C(K-,K+){}^{12}{}_{\Xi}Be$ E75: ${}^{7}Li(K-,K+){}^{7}{}_{\Xi}H$

A new dedicated spectrometer S-2S has been installed. Run soon.


YN scattering

High quality YN scattering data have been long awaited, but now a new era has come!

<u>Ap scattering at JLab (CLAS)</u>


J. Rowley et al., Phys. Rev. Lett. 127, 272303

Σp scattering

Zachariou

- Ap polarization observables
- Ad scattering
 - Ξp scattering in future

J. Haidenbauer and U.-G. Meißner, Phys. Rev. C 72, 044005 (2005) T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59, 21 (1999).

Comparison b/w YN scattering /correlation experiments

	how to produce hyperons	hyperon momentum	merits		
J-PARC	p (π [±] ,K+) Σ [±] p (π ⁻ ,K _s ⁰) Λ	p _y = 0.4—0.8 GeV/c	large Λ polarization -> spin observables		
JLab	ρ (γ, Κ+) Λ	p _y = 0.7—2 GeV/c	beam polarization -> polarization observables		
ALICE etc.	Femtoscopy (pp) Λp, Σp, Ξp, ΛΛ,	D. < U.4 GeV/C	multi strange systems		
elc.	·····, -···, -···, ····	These three methods are complementary			
High quality experiments are changing the game!					

Essential to solve the hyperon puzzle.

Femtoscopy

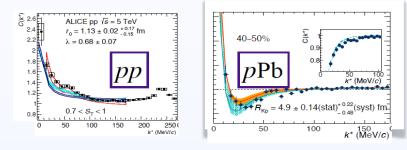
Femtoscopy first appeared in HYP2018. Now it has grown up to be a "big business".

Mihaylov, Zbroszczyk, Lalik, Singh, Pawlowska, Serksnyte, Lea, Vazquez Doce, ...

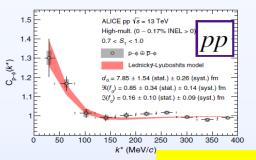
Various new data with high statistics have been reported. Established as a standard tool to study hadron-hadron interaction

STAR AuAu: PRL 114,022301(2015) $\Lambda\Lambda$ ALICE pp: PLB 797 (2019) 134822 PbPb: PRC99, 024001 (2019) (* 2 (* X) U 1.8 ALICE pp \s = 13 TeV $O \Lambda - \Lambda \oplus \overline{\Lambda} - \overline{\Lambda}$ pairs 20000000 1.6 ····· Baseline Femtoscopic fit 1.4 ĝ 0.8 ---- Quantum statistics 1.2 LL w/o residual 0.6 STAR AuAu 0.8 ALICE pp 0.6 0 0.1 0.2 0.3 0.4 0.5 Q (GeV/c) 0.4 100 200 300 400 k* (MeV/c) STAR AuAu: PLB 790, 490 (2019) $p\Omega$ ALICE pp: Nature 588 (2020) 232 C(k*) ALICE pp 40-80% $p - \Omega^{-1}$ Model:R, = R_ = 2.5 fm 200 k* (MeV/c) STAR AuAu 0.5

02


100

200

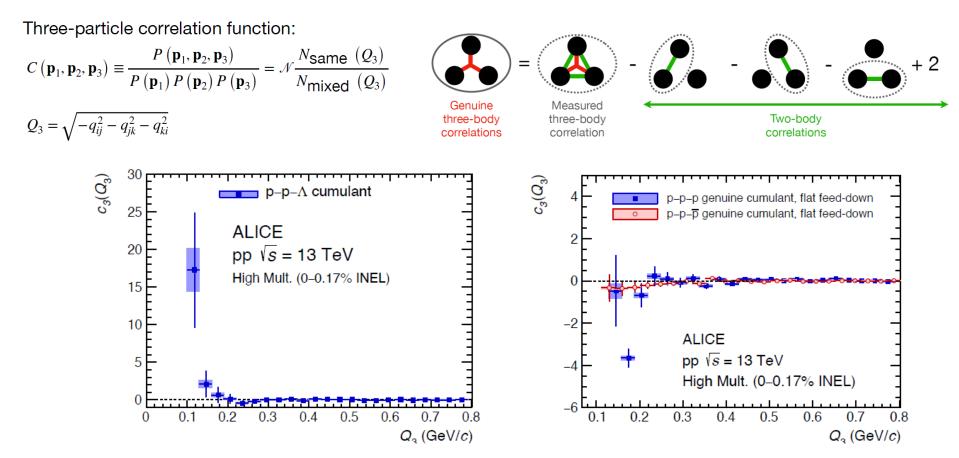

k* (MeV/c)

300

K⁺*p* <u>ALICE *pp*: PRL 124 (2020) 9, 092301</u> <u>PbPb: PLB 822 (2021) 136708</u> STAR AuAu: NPA 982 (2019) 359

 $p\phi$ ALICE *pp*: <u>PRL 127 (2021) 17, 172301</u>

Slide by Kamiya

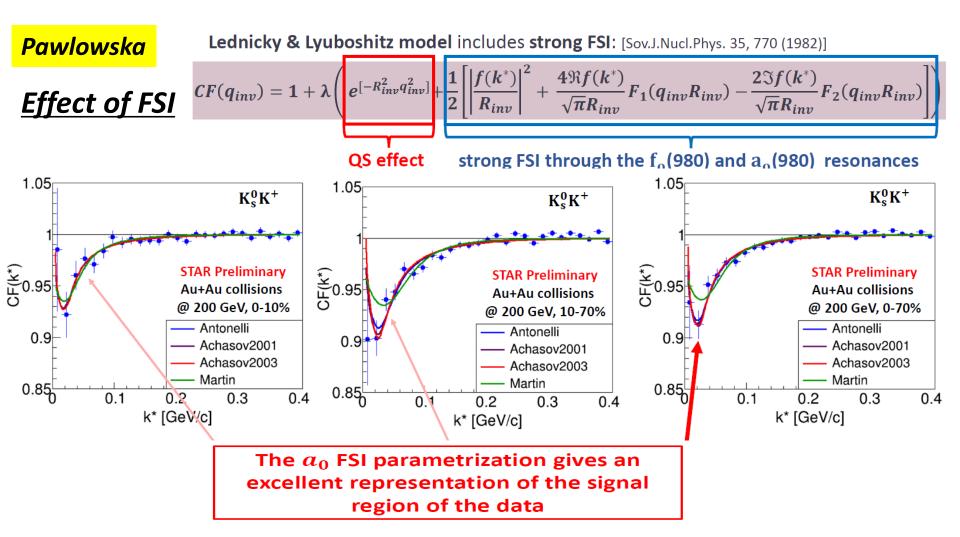

Two-particle momentum correlation measured with ALICE at the LHC

- KN and $\overline{K}N$ interaction
 - ALICE Collaboration PRL 124 (2020) 9, 092301
 - ALICE Collaboration PLB 822 (2021) 136708
 - ALICE Collaboration arXiv: 2205.15176
- and other interactions:
 - \circ pp, pA, AA: ALICE Collaboration PRC 99(2019)
 - ΛΛ: ALICE Collaboration PLB 797 (2019) 134822
 - pE: ALICE Collaboration PRL 123 (2019) 134822
 - pΣ^o:ALICE Collaboration PLB 805 (2020) 135419
 - pΩ: ALICE Collaboration Nature 588 (2020) 232-238
 - pp: ALICE Collaboration PRL 127 (2021) 172301
 - B-B:ALICE Collaboration PLB B 829 (2022) 137060
 - pΛ: ALICE Collaboration arXiv:2104.04427
 - pD: ALICE Collaboration arXiv:2201.05352
 - **NE:** ALICE Collaboration arXiv:2204.10258
 - ppp and ppΛ: ALICE Collaboration arXiv:2206.03344

In 2018, I never though that such channels can be experimentally investigated.

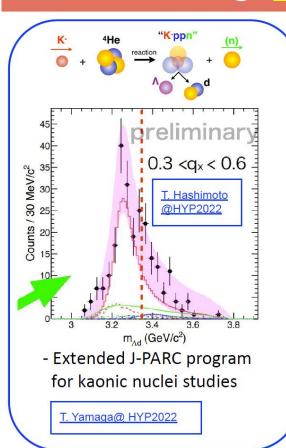
Serksnyte

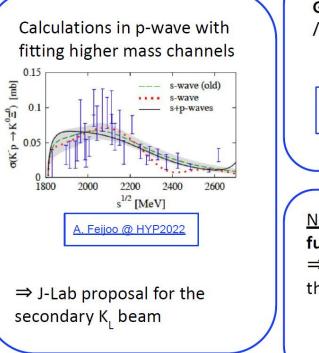
Three-body correlation

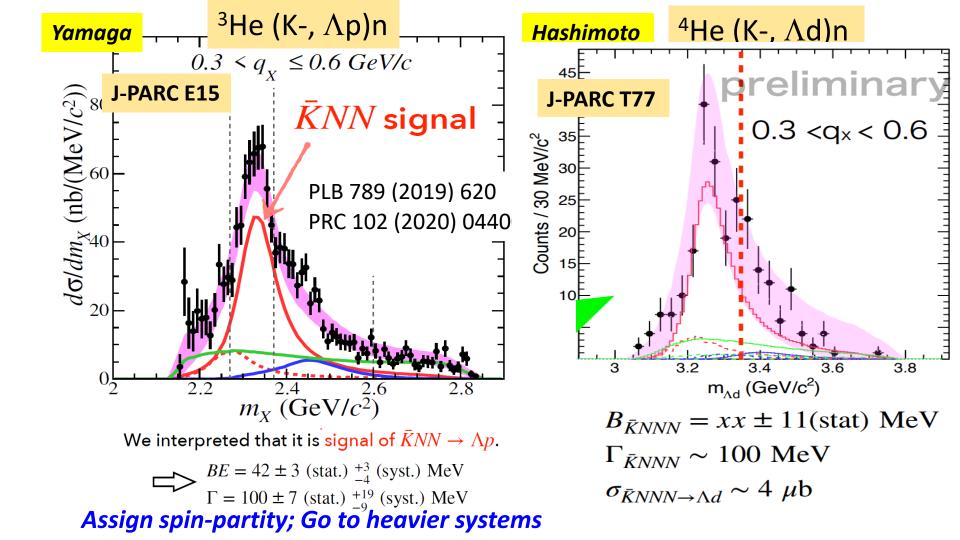


Kamiya

Progress in correlation function



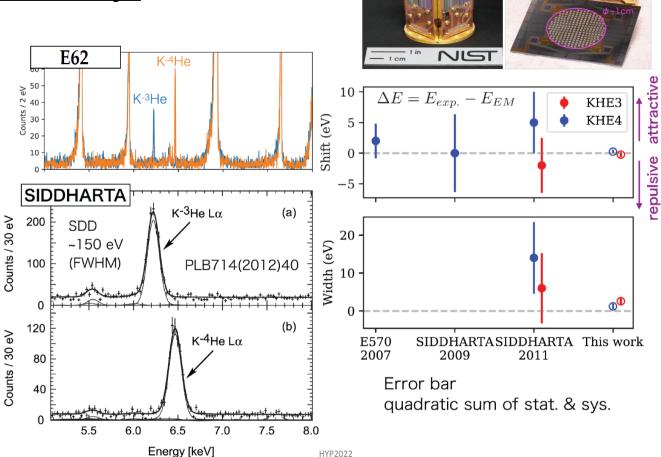

Kamiya, Hyodo, Morita, Ohnishi, Weise, PRL 124 (2020) 13, 132501


K^{bar}N systems

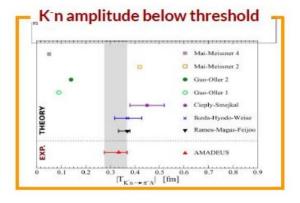
Data is coming Perfect review by Oton Vazquez Doce

GLUEX: $\Lambda(1405)$ photoproduction $\gamma p o K^+ \Lambda^*$ N. Wickramaarachchi @ HYP2022 New approaches proposed: fusion reaction $K^-d \rightarrow p\Sigma^ \Rightarrow$ can deliver information on the lower pole of $\Lambda(1405)$ E. Oset @ HYP2022

NIST(US) TES spectrometer for E62


Review of Scientific Instruments 88, 053108 (2017)

K- atomic X-rays


SIDDHARTA-2 with SSD => challenge to K-d

Transition Edge Sensor (TES) => 10 times better resolution

Piscicchia Low-energy K- nucleus interaction (AMADEUS)

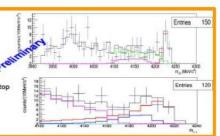
K- "n" $\rightarrow \Lambda \pi^- \Rightarrow$ K-p amplitude below the threshold.

Process	Branching Ratio (%)	σ (mb)	Q	p_K (MeV/c)
2NA-QF Λp	0.25 ± 0.02 (stat.) $^{+0.01}_{-0.02}$ (syst.)	2.8 ± 0.3 (stat.) $^{+0.1}_{-0.2}$ (syst.)	Q	128 ± 29
2NA-FSI Ap	6.2 ± 1.4 (stat.) $^{+0.5}_{-0.6}$ (syst.)	$69 \pm 15 \text{ (stat.)} \pm 6 \text{ (syst.)}$	0	128 ± 29
2NA-QF $\Sigma^0 p$	0.35 ± 0.09 (stat.) $^{+0.13}_{-0.06}$ (syst.)	$3.9 \pm 1.0 \text{ (stat.)} ^{+1.4}_{-0.7} \text{ (syst.)}$	0	128 ± 29
2NA-FSI $\Sigma^0 p$	7.2 ± 2.2 (stat.) $^{+4.2}_{-5.4}$ (syst.)	80 ± 25 (stat.) $^{+46}_{-60}$ (syst.)	0	128 ± 29
2NA-CONV Σ/Λ	2.1 ± 1.2 (stat.) $^{+0.9}_{-0.5}$ (syst.)	-		
3NA Apn	1.4 ± 0.2 (stat.) $^{+0.1}_{-0.2}$ (syst.)	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	0	117 ± 23
3NA Σ^0 pn	3.7 ± 0.4 (stat.) $^{+0.2}_{-0.4}$ (syst.)	$41 \pm 4 \text{ (stat.)} {}^{+2}_{-5} \text{ (syst.)}$	0	117 ± 23
4NA Apnn	$0.13 \pm 0.09 (\text{stat.}) \stackrel{+0.08}{_{-0.07}} (\text{syst.})$	-		
Global $\Lambda(\Sigma^0)p$	$21 \pm 3(\text{stat.}) \stackrel{+5}{_{-6}}(\text{syst.})$	-		

The ratio between the branching ratios of the 2NA-QF in the Λp channel and in the $\Sigma^0 p$ is measured to be:

$$\mathcal{R} = \frac{BR(K^-pp \to \Lambda p)}{BR(K^-pp \to \Sigma^0 p)} = 0.7 \pm 0.2(stat.)^{+0.2}_{-0.3}(syst.)$$

 $BR(K^{-}2NA \rightarrow YN) = (21.6 \pm 2.9(stat.)^{+4.4}_{-5.6}(syst.))\%$

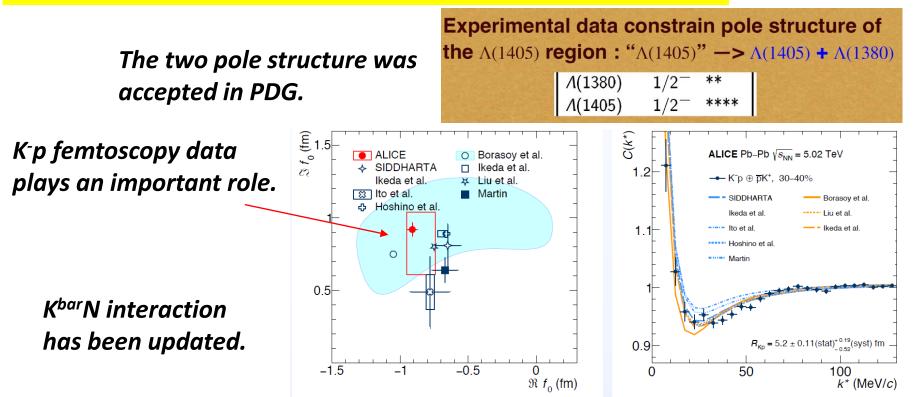

• $\sigma_{K^-p\to\Sigma^0\pi^0} = 42.8 \pm 1.5(stat.)^{+2.4}_{-2.0}(syst.)$ mb

ightarrow K- p -> (Σ⁰/Λ) π⁰ightarrow
ightarrow
ight

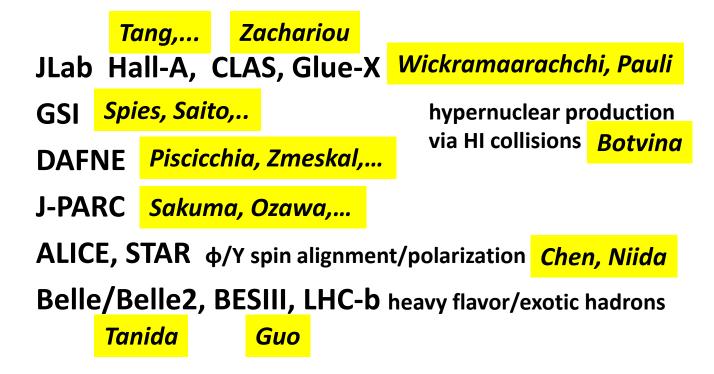
• At channel: 4NA BRs and σ

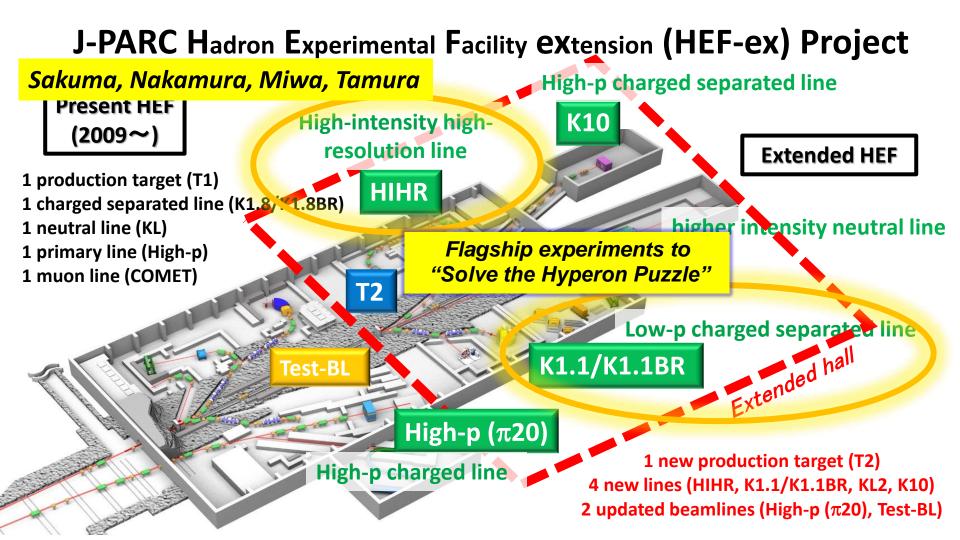
 $\begin{array}{l} {\sf BR}({\sf K}^{-4}{\sf He}(4{\sf NA})\to\Lambda t)<2.0\times10^{-4}/{\sf K}_{stop}\ (95\%\ c.\ l.)\\ \sigma(100\pm19\ {\sf MeV/c})\ ({\sf K}^{-4}{\sf He}(4{\sf NA})\to\Lambda t)=\\ =(0.81\pm0.21\ ({\rm stat})^{+0.03}_{-0.04}\ ({\rm syst}))\ {\sf mb} \end{array}$

 $\begin{array}{l} \mathsf{BR}(\mathsf{K}^{\text{-12}}\mathsf{C}(4\mathsf{NA}) \to \mathsf{At\,}^8\mathsf{Be}) = \ 1.5 \pm 0.5 \times 10^{-4} \, (\text{stat}) \ /\mathsf{K}_{\text{stop}} \\ \sigma(\,\mathsf{K}^{\text{-12}}\mathsf{C}(4\mathsf{NA}) \to \mathsf{At\,}^8\mathsf{Be}) = 0.58 \pm 0.11 \, (\text{stat}) \ \mathsf{mb} \\ \sigma(\,\mathsf{K}^{\text{-12}}\mathsf{C}(4\mathsf{NA}) \to \Sigma^0 \mathsf{t\,}^8\mathsf{Be}) = 1.88 \pm 0.35 \, (\text{stat}) \ \mathsf{mb} \end{array}$



Lea Vazquez Doce


K^{bar}N interaction and Λ(1405)


Wickramaarachchi

Feijoo, Oset, Cieply, Shevchenko, Ren, Hyodo, Kamiya, Obertova

Future directions and Facilities

Vidana, Tolos, Ohnishi

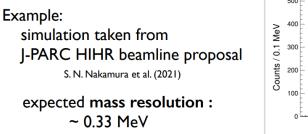
Tamura

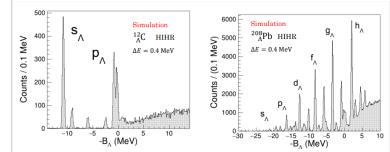
Le, Barnea,

Hiyama, Gal, ..

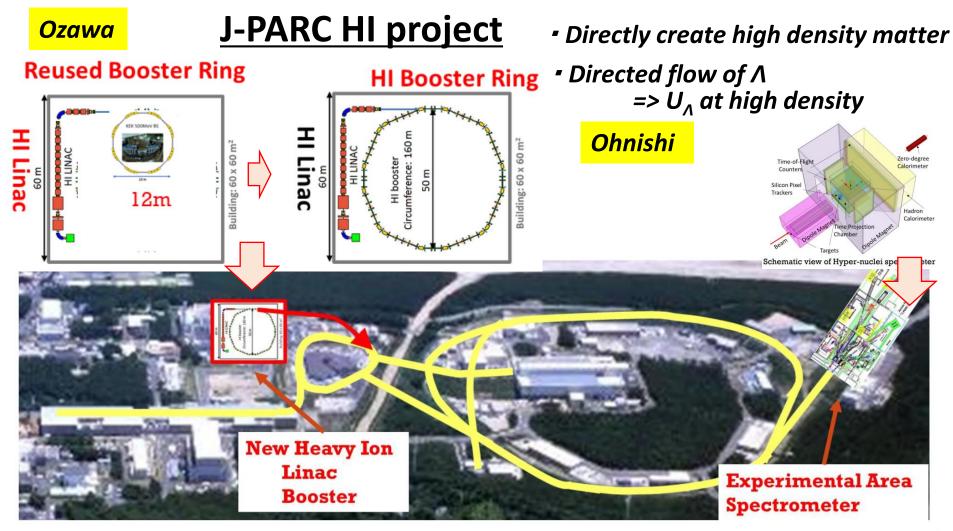
Hyperon puzzle / Topical session for ΛNN

Epelbaum Haidenbauer Doi, Illa Bazak


BB interaction Nuclear structure


CONCLUSIONS and OUTLOOK

Understanding strangeness in dense matter and neutron stars requires detailed evaluation of the quantitative balance between hyperon-nuclear two- and three-body forces.



- Improved and expanded high-statistics YN two-body data base : YN scattering and reactions (e.g. J-PARC E40); YN correlation functions (e.g. Femtoscopy)
- Improved systematics of high-resolution hypernuclear spectroscopy : (π^+, K^+) at J-PARC, $(e, e'K^+)$ at JLab, MAMI, with mass resolution better than 0.5 MeV

Increasing amounts of astrophysical data (focus on speed of sound in neutron stars)

Close collaboration between theorists and experimentalists is more important

I all the second

The conference was really wonderful. Program, location, organization, hybrid-style, social events,... We sincerely thank the organizers for great efforts to realize such a fantastic 3D conference during the most difficult COVIT-19 time.

Oskar Kokoschka (1934)