SSL Year 3 Plans

IRIS-HEP Retreat May 29, 2020

- Facility R&D
 - SSL to inform Tier2 evolution & analysis facilities
 - Multi-site, hyperconverged infrastructure
 - Supporting flexible, reproducible deployments
- Supporting IRIS-HEP Grand Challenges
 - Analysis Challenge
- Accelerated Data Delivery R&D
 - Explore hardware acceleration at different points in the infrastructure

Multi-site SSL with minimum of federation to expand access and institutional contributions

- User credentials with CILogon
- Federation
- Storage

Volunteer candidate sites - Tier2 sites?

mwt2, aglt2, unl, uw, ucsd, caltech were mentioned

Milestone

- Four SSL sites providing a k8s resources
 - A subset providing multi-cluster scheduling & user environments (e.g. JupyterLab) to support analysis challenge

Supporting the Grand Analysis Challenge

Outline of goals <u>here</u> & <u>here</u>

Fits with vision of declarative CI

Milestone:

- Prepare K8s clusters and other prerequisites including monitoring & analytics
- Scale: 200 TB, 1500 core
- With AS & DOMA, execute challenge

Accelerated Data Delivery

High level goal is to explore (hardware) accelerating data delivery from ROOT format to columnar formats

Two milestones

- Opportunity assessment which profiles baseline transformer performance, evaluates technology options (Dec 2020)
- . If cost/benefit relative to ServiceX on cluster baseline indicates, build prototype system and benchmark its performance (July 2021)

Year 3 Summary

- Four sites offering k8s resources configured with multi-cluster scheduler or equivalent
- Prepare resources, instrument with analytics, contribute facility services for analysis grand challenge
- Assessment study on hardware accelerated data delivery, and if cost/benefit indicates:
 - Build prototype hardware accelerated ServiceX system and benchmark

Questions?

Accelerator Delivery Testbed

- Ingest at 50-100 Gbps
- Uncompress ROOT format
- Reformat to columnar format
- Apply user filters
 - cuts & columns
- Write out reformatted, filtered events
- Benchmark

Accelerated Delivery - details

Demonstrate ingestion via ServiceX on a single host that achieves 50-100Gbps sustained ingest rate while doing the following:

- Uncompress root baskets and reformat into columnar data format to support much higher speed on reads later. Maybe add some indexing for fast retrieval if useful?
- Apply an event filter on keeping only events for which at least one object within a container of objects within a basket exceeds some user defined threshold.
 - Assume filtering such that O(10)% of events survive on output (5-50% should all work well enough).
- Apply an object list filter
 - User defined set of baskets are to be kept while all else is dropped.
 - This can be done even without uncompressing.
- Apply a simple algorithm like 4-vector addition or alike, possibly also more complex thing like JEC (apply a scalefactor to all objects in a specific container according to their place in a 2D map of eta-pT, i.e. object characteristic)
- Combine all three of the above.

Computational Storage with CSSDs

