Analysis
Grand Challenge

Kyle Cranmer (NYU)
Some considerations

Looking for a challenge that:

- involves multiple IRIS-HEP products and can serve as an effort to help unifying and connect projects / efforts
- Needs to be clearly relevant to HL-LHC and IRIS-HEP goals
- Would like it to span scope of Analysis Systems
- Improve “light-house” and intellectual hub aspect of IRIS-HEP
- Align with other goals, like training and workforce development
Analysis Systems

- Develop sustainable analysis tools to extend the physics reach of the HL-LHC experiments
 - create greater functionality to enable new techniques,
 - reducing time-to-insight and physics,
 - lowering the barriers for smaller teams, and
 - streamlining analysis preservation, reproducibility, and reuse.
Value of IRIS-HEP as an Institute

IRIS-HEP as a lighthouse:

- provide cohesive, long-term vision for how software should evolve to meet needs of HL-LHC
- take advantage of holistic perspective of the institute
- Examples:
 - *columnar analysis*
 - *declarative programming*
 - *differentiable programming*
 - *preservation & reuse*
A coherent ecosystem
User Story

As an analyzer, I want to optimize an analysis end-to-end for a targeted signal hypothesis (including systematics) on an HL-LHC sized dataset so that I can obtain sensitive observed results for that signal while still being able to reinterpret the analysis for various signal hypotheses.
Assumptions

1. We have ~200TB for background MC samples, a specific signal hypothesis to target for optimization, and a placeholder for “observed data”
2. We have a typical SUSY search with multiple selection regions, cuts, and variables to be histogrammed for input to a template analysis like that of pyhf. The analysis strategy has some sensitivity to the target signal hypothesis.
3. We have an analysis facility with ServiceX and SkyHook (hand off from DOMA to AS) and 1500 cores. If each core can process @ 50 kHz each this gives 75MHz which would process 100B events @ 2kB/event (=200TB) in 25 min. Eg. 25 min per optimization iteration.
4. We have necessary ingredients to compute systematic variations. Either:
 a. Pre-computed event weights, scale factors, varied kinematics, etc. that needs to be processed for input to statistical model, or
 b. code to compute those ingredients on the fly
 c. Could also have (b) triggered in first pass, and then use those cached values for those ingredients cached for the later optimization passes.
5. “End-to-end” starts with necessary ingredients described above and ends with limits on signal strength and background-only p-values as objective of optimization
 a. Assuming here the beginning of the analysis chain is already in a format compatible with columnar analysis tools (eg. Arrow, Awkward, Coffea) and no conversion from xAOD etc. is needed -- this has already been demonstrated and such a conversion shouldn’t be part of our eventual analysis model)
6. We have multiple signal scenarios suitable for reinterpretation.
Acceptance Criteria

1. End-to-end analysis optimization including systematics on a realistically sized HL-LHC (~200TB) end-user analysis dataset + observed limit & reinterpretation afterburner
2. Specifications of regions, variables, and systematic variations declared using cabinetry and func_adl
3. Corresponding input datasets should be identified using in a way that is, abstracted from traditional file-based interface
4. Use of ServiceX, SkyHook, Coffea to perform event selection and deliver histograms for pyhf model
5. Optimize analysis by using automatic differentiation to compute \(\frac{d(\text{Expected limit})}{d(\text{analysis parameters})} \), which are back-propagated from output of stats tool, through pyhf running in fitting service, back to ServiceX running at analysis facility, and through the event selection & histogramming code.
 o Notes:
 ■ we have prototypes for this running on a single machine [see grad-hep, neos]
 ■ We could make some aspects of this challenge be stretch goals, but let’s don’t water it down so that this goal is not taken seriously.
 ■ We will need to do some more quick investigation before we are are able to
 ■ it is also possible to use non-gradient based approaches for optimization (eg. Bayesian Optimization) that wouldn’t require passing gradients back to ServiceX. And some of these approaches can use partial gradient information.
6. Once optimized: apply optimized analysis to “observed data” (may also be synthetic in reality) to obtain “observed limits”.
7. Analysis Preservation & RECASTing:
 o Given a record pointing to preserved analysis (may be more than a git repository, could also include docker images, workflow components, etc.) and that I have access to compatible compute resources, I can reproduce results and reinterpret the analysis
8. Stretch: using active learning [excursion] to reinterpret efficiently
Why Differentiable?

Forward looking, game changing functionality

Fast differentiable sorting and ranking

DL as Differentiable Programming

Deep learning increasingly synonymous with differentiable programming

“People are now building a new kind of software by assembling networks of parameterized functional blocks (including loops and conditionals) and by training them from examples using some form of gradient-based optimization.”

Yann LeCun, 2018

Wikipedia on Differentiable programming
Why focus on differentiable programming?

- **Intellectual Leadership:** It is a modern paradigm growing and abstracting from success of deep learning, and a more natural fit to HEP than replacing everything with machine learning.

- **Increased Functionality:** We will have more sensitive analyses. Differentiable analysis systems would dramatically accelerate and improve essentially all fitting / tuning / optimization tasks. It also facilitates propagation of uncertainty in a more powerful way. Paves way to hybrid systems that fuse traditional approaches and machine learning more seamlessly.

- **Connection with Industry:** This has been an effective conduit to connections with Google (Jax and Tensorflow teams) and pytorch community.

- **Foster Innovation:** there are a ton of ideas around use of differentiable programming

- **Training & Workforce development:** These are very valuable skills, young people will do much better on job market if they are familiar with diff prob.
In our community

http://gradhep.github.io

Optimization by gradient descent

observables + gradients
Something with trainable parameters φ

model + gradients
HistFactory likelihood
Some other parametric fit
Data-driven likelihood

inference + gradients
CLs
Feldman-Cousins
Posterior sampling
Credible intervals
...etc

d (inference)

d (\varphi)

Wikipedia on Differentiable programming

slide from Nathan Simpson: [link to talk]
Prototypes

https://indico.cern.ch/event/915053/

AS Biweekly Meeting

Wednesday 13 May 2020, 12:00 → 13:00, Ameba/Chicago

Description: Agenda and Live Notes

Videoconference Rooms: IRIS-JEF

12:00 – 12:15 Auto Diff Primer
Speaker: Kyle Stuart Drummer (New York University (US))
An example program... For fun Google... Gpsoo's slides at a... Implicit/Forward prop... Paper: AutoDiffPrimes...
Slides from Gpsoo Wikipedia article Wikipedia on Differential...

12:15 – 12:30 Differentiable analyses
Simple example

12:30 – 12:45 neos
Speaker: Mr. Nathan Daniel Simpson (University of Sydney, AU)

12:45 – 13:00 Discussion

neos
Challenge: Auto-diff across systems

\[f(x_1, x_2) \]

\[f = \bar{w}_5 = 1 \text{ (seed)} \]

Initial selection of events and columns needed

\[\bar{w}_4 = \bar{w}_5 \frac{\partial w_5}{\partial w_4} = \bar{w}_5 \cdot 1 \]

Final event selection, filling of histograms and building of statistical model

\[\bar{w}_3 = \bar{w}_5 \frac{\partial w_5}{\partial w_3} = \bar{w}_5 \cdot 1 \]

pass gradients back

\[\bar{w}_1^a = \bar{w}_4 \cos(w_1) \]

pass gradients back ?

\[\bar{w}_1^b = \bar{w}_3 \cdot w_2 \]

Initial selection of events and columns needed

\[\bar{x}_1 = \bar{w}_1^a + \bar{w}_1^b = \cos(x_1) + x_2 \]

\[\bar{x}_2 = \bar{w}_2 = x_1 \]

fitting service calculates expected significance or limit
• Generally a positive reaction to the proposed Grand Challenge

• Need to clarify framing of challenge so that it is highlights both the facilities aspect and the techniques aspect (in response to Brian’s comment)
 ○ NB: I consider the end-to-end optimization element to be a ‘systems-level’ view in terms of both the computing facilities aspect and the technique

• We can include GPU/accelerators for bulk data processing as well as a stretch goal

• Need to start working backwards into milestones (Peter & Ben)
 ○ Some aspects of challenge can be firmed up very soon, but it will take some more time to decide if some aspects of the challenge are core or stretch goals

• Challenge motivates one or more blueprint meetings

• One milestone is to identify and settle on the facilities to carry out the challenge
 ○ Options: Ops programs, Expanse SDSC, GKE?
 ○ Mike H.: Ops program can contribute by helping test and integrate the infrastructure components like SkyHook, ServiceX, etc.