
GNN Tracking
Markus Atkinson, Gage DeZoort, Lindsey Gray, Mark
Neubauer, Isobel Ojalvo, Savannah Thais
IRIS HEP Retreat 05/28/2020

Project Introduction
● Our group is aiming to improve charged-particle tracking in ATLAS & CMS → one of

the primary challenges for the HL-LHC era
○ Particularly through the use of accelerators (FPGAs) and ML algorithms such as Graph Neural

Networks (GNNs)
● Relatively new project (~6 months old)
● Collaboration between Princeton and Illinois

○ Lindsey Gray (FNAL) collaborates through our meetings, Slack discussions, sharing of code & ideas
● Have bi-weekly meetings among the team

○ Developing internal GitHub with visualizations (to contribute to discussed repo)
● Beginning to contribute the ExaTrkX Project (e.g. developing shared repo based on

MLFlow, with Ben G. helping out) and attend their meetings, report on our progress
● Currently focused only on ‘pixel detector’ using the TrackML dataset

○ Both ATLAS and CMS use pixel trackers for track seeding and vertex reconstruction
○ Stubs or ‘tracklets’ from the pixel detector are used to seed first pass inside-out track finding

2

Achievements So Far
● Developed visualization tools for graphs
● Using a layer pair approach for graph construction from ExaTrkX

○ Developing and optimizing cuts in 2 existing graph constructions
○ Measured efficiencies of implemented graph constructions
○ Explored two specific transformed geometries
○ Including different modules in the graphs (barrel, endcaps)

● Investigated multiple GNN architectures for training
○ Using a recurrent combination of edge and node classifiers
○ Using integrated graph modules
○ Implemented Interaction Network GNN (in early stage of study)

● Implemented initial track building algorithms
○ Using Union Find
○ Preliminary results for tracking efficiencies and fake rates

● Acquire/access necessary software/hardware for FPGA development
○ Vivado (Xilinx), Quartus (Intel), HLS, OpenCL
○ Xilinx Alveo Card, Intel Stratix 10 3

On Going & Planned Work
● Optimize edge cutting parameters

○ ∆𝜙/∆𝑅 , k of kNN
● Implement improved track-finding algorithms:

○ DBScan
○ Integrate into GNN architecture

● Explore additional graph construction algorithms:
○ Dynamic knn graphs
○ Simulated annealing
○ Modified triangulation
○ Dynamic point clouds

● Explore additional architectures:
○ GraphSAGE and PinSAGE
○ Spectral Convolutions

● Explore other transforms and embeddings
○ Hough Transform

● Segment Detector (if necessary)
○ Reduce graph size, requires additional post-processing

● Explore how these techniques and code developed on trackML
data generalize to ATLAS/CMS simulation

4

pT> 2.0 GeV

pT> 0.5 GeV

https://arxiv.org/abs/1712.00709
https://en.wikipedia.org/wiki/Delaunay_triangulation
https://arxiv.org/abs/1801.07829
https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1806.01973.pdf
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801

FPGA Acceleration
● Implement traditional (non-ML based) tracking algorithm on FPGA
● Define GNN algorithm components to be implemented
● Some promising work on fitting GNNs into FPGA resource constraints by the

HLS4ML group (e.g. see CTD talk by Y. Iiyama using the GarNet model)
● Comparisons across architectures

○ GPUs vs FPGAs

● Princeton group is using OpenCL and an Intel Stratis 10 Dev Kit
● Illinois group is using HLS and Xilinx Alveo U250

○ Collaboration with NCSA Innovative System Laboratory

5

https://indico.cern.ch/event/831165/contributions/3758961/attachments/2024856/3386899/gnn_for_fpga.pdf

Year 3 and 4/5 Milestones (proposed, for discussion!)
● Year 3 Milestones & Deliverables

○ 6-9 months: Explore implementation of traditional (non-ML) tracking algorithms on FPGAs
○ 9-12 months: Converge on an efficient and ‘acceleratable’ graph-based tracking pipeline

■ Graph design (embeddings, transformations, edge constructions)
■ GNN architecture (ML method)
■ Track construction/post-processing

○ 12-18 months: Snowmass white paper

● Year 4/5 goals
○ Y4 Demonstration and benchmarking of our graph-based tracking accelerator in an HLT application

using SSL resources
○ Y5 Our project integrated into the planning for one or both of the experiments

● Metrics
○ These need to be developed but could include e.g. the level of event tracking time reduction (e.g. fast

seeding using the pixel detector), broader impacts to non-LHC-trigger applications, etc.

6

Backup

7

Tracking Challenge at HL-LHC
● HL-LHC poses increased challenges to

tracking
○ 140-200 pileup, ~10,000 tracks every 25 ns
○ 1035 cm-2s-1 instantaneous luminosity

● Tracking is the most computationally
intensive reco task

○ Time grows exponentially with increasing pile up
○ Additional challenges of overlapping tracks

● Must exploit developments in hardware
and software

○ Improved algorithms and data representation
○ Parallelize currently serial algorithms
○ Adapt to modern architectures (GPU, FPGA)

8

● Hits are selected using truth information satisfying a pT cut
● Edges formed between adjacent layer pairs for hit pairs with

○ ∆𝜙/∆𝑅 < 0.0006
○ z0 < 150 mm
○ -5 < η < 5

Graph Construction: Layer Pairs

False edges
True edges pT> 2.0 GeV pT> 0.5 GeV

9

Graph Construction: Layer Pairs

10

Graph Size Graph Efficiency

Nodes

Edges

True Edge Fraction

True Edge Efficiency∆𝜙/∆𝑅 cut not optimal

Graph Construction: kNN

11

Input

kNN with k=3 and Euclidean metric

• Built into pytorch geometric
• Can customize distance
metric to incorporate
physics information

• Implementation in progress
for TrackML data set

• Need additional studies to
optimize k for high pile-up

Architectures: Edge Classifier 1 (EC1)

• 'Graph Modules’ combine edge and node networks

• Entire architecture is feed-forward

• Initial training:
• Used layer pair graphs with 0.5 GeV pT cut
• Trained on Nvidia P100 GPU
• 6 graph modules, 128 hidden dimensions,
• Trained for 20 epochs with BCE loss and 0.001 learning rate

12

Architectures: Edge Classifier 1

13

Note: network needs to be
re-trained with additional
epochs

Final edge accuracy:
75%

True edges: > 0.5 edge
weight

False edges: < 0.5 edge
weight

Truth Graph

Loss

Architectures: Edge Classifier 2 (EC2)
• Graph embedding from each module is
propagated to future modules

• Initial training:
• Used layer pair graphs with 0.5 and 2 GeV pT

cuts
• Trained on Nvidia GeForce 2080Ti Turbo 11G

GPU
• 6 graph modules with 64 hidden dimensions
• Trained for 120 epochs with BCE Loss and

0.0001 learning rate

14

Pixel Barrel Results (EC2)

15

pT > 0.5 GeV

pT > 2.0 GeV
Classified Graphs:
True Edges
False Edges

Error Graphs:
Fake Edges (classified
as true, but not)
Missed Edges (truth
edges classified as
false)

.9824 .0120

.0176 .9880

.9790 .1004

.0210 .8996

Confusion Matrices (EC2)

16

Full
Barrel

Modules
8,13,17

Inner
Barrel

Module 8 Inner End
Caps

Modules 7,9 Inner
Detector

Modules
7,8,9

High p
T

2.0
GeV

.9792 .0099 .9824 .0120 .9435 .0005 .8498 .1050

.0208 .9901 .0176 .9880 .0565 .9995 .1502 .8950

Low p
T

0.5
GeV

.9840 .0902 .9790 .1004 .9882 .0005 .9571 .2062

.0160 .9098 .0210 .8996 .0118 .9995 .0429 .7938

False Edge Efficiency Missing Edge Fraction

Fake Edge Fraction True Edge Efficiency

● Want to avoid edges that intersect
barrel layers between them

Motivation for ΔR cut (EC2)

17

Inner
Barrel

Inner
Endcaps

Inner
Detector

CUT

Track Building

•Initial implementation Uses UnionFind
•Nodes are grouped into subsets by connected edges called unions.

•Tracks are defined as any union with ≥ 3 nodes (2 edges)

•Tracks built using the truth graph (from preprocessing) and the GNN
output graph (after inference)

•GNN tracks are then matched to truth tracks.
•Currently requires completely identical unions of nodes to define a match

18

Tracking Results (EC2)

19

Modules Included
Full Barrel
8, 13, 17

Inner Barrel
8

Inner Endcaps
7, 9

Inner Detector
7, 8, 9

Inner Detector
with dR > 65 mm cut

High p
T
 2.0 GeV

Track Efficiency .9319 .9554 .9975 .6635 .6651

Fake Fraction .0506 .0304 .0018 .2350 .2350

Low p
T
 0.5 GeV

Track Efficiency .5569 .5553 .9973 .4788 .6288

Fake Fraction .3678 .3494 .0022 .3848 .2881

• Track Efficiency = Matched GNN Tracks / Total Truth Tracks

• Fake Fraction = Unmatched GNN Tracks / Total GNN Tracks

Is there a preferred geometry that would help GNN train in barrel region?

Coordinate Transforms (EC2)

20

Low p
T
 0.5 GeV Standard Cylindrical Inversion Spherical Inversion

Track Efficiency .5553 .2809 .4724

Fake Fraction .3494 .5931 .4319

Standard Geometry Cylindrical Inversion (R=1m)

Spherical Inversion (R=1m)

Graph Construction: On-going Work

•

Savannah Thais 05/04/2020 21

Architectures: On-going Work

• Measure full track finding efficiency of different architectures

• Better understand what types of edges are mis-identified by network

• Compare to existing tracking efficiencies

• Continue implementation of interaction network

• Learns on ‘interaction relations’: two nodes and shared connecting edge

• Users deeper NNs within each graph module, but fewer modules overall

• Explore additional architectures:

• GraphSAGE and PinSAGE

• Spectral Convolutions

Savannah Thais 05/04/2020 22

https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1806.01973.pdf
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801

Full Barrel Missed Edges and Fake Edges

High p
T
 2.0 GeV Low p

T
 0.5 GeV

Event
#8849

23

Inner Barrel Missed Edges and Fake Edges

High p
T
 2.0 GeV Low p

T
 0.5 GeV

Event
#8849

24

Inner Endcaps Missed Edges and Fake Edges

High p
T
 2.0 GeV Low p

T
 0.5 GeV

Event
#8849

25

Inner Detector Missed Edges and Fake Edges

High p
T
 2.0 GeV Low p

T
 0.5 GeV

Event
#8849

26

Tuning the dR cut

• These are all the edges that have 60mm < dR < 70mm

• Perform a sweep in this range to find optimal value (not
done)

• By eye I observed that cutting below 65mm started removing
edges that we actually want to keep, but still left some of these
bad edges that intersect the second barrel layer

• Initial Cut was done at dR > 65mm

27

Inner Detector Missed Edges and Fake Edges

Without dR cut With dR > 65 mm cut

Event
#8849

High p
T
 > 2.0 GeV

.8498 .1050

.1502 .8950

.8236 .0999

.1764 .900128

Inner Detector Missed Edges and Fake Edges

Event
#8849

Without dR cut With dR > 65 mm cut
Low p

T
 > 0.5 GeV

.9571 .2062

.0429 .7938

.9781 .0812

.0219 .918829

