cabinetry

Kyle Cranmer’, Alexander Held"

" New York University

IRIS-HEP retreat
May 27, 2020

ATLAS @'

EXPERIMENT

https://indico.cern.ch/event/896167

What is cabinetry?

+ analyzers use cabinetry to design template fit models via a declarative configuration file
» analyzers specify selections for signal/control regions, (Monte Carlo) samples, systematic uncertainties
» cabinetry steers the histogram creation (region ® sample ® systematic)
» using the histograms, cabinetry produces a workspace (serialized fit model)

» cabinetry steers statistical inference and provides diagnostics and visualization tools

cabinetry steering execution

Statistical Statistical
model Workspace analysis &

building diagnostics

Q

Event selection,
systematic Histograms
uncertainties

4y .l

« github: https://github.com/alexander-held/cabinetry/

« IRIS-HEP project page: https://iris-hep.org/projects/cabinetry.html

https://github.com/alexander-held/cabinetry/
https://iris-hep.org/projects/cabinetry.html

cabinetry within IRIS-HEP

+ a declarative configuration steers cabinetry and its interactions with other tools
« data is delivered to cabinetry via e.g. ServiceX after coffea processing, or straight from uproot as an awkward array

« pyhfis used for inference

func_adl ~

formulate o
Modularity & Declarative
interfaces configuration

Statistical
Event selection, el Workspace Statistical Result,
systematic Histograms building analysis diagnostics

uncertainties

YiY 4 (1

Data Selection & From workspaces Fit results Reusability
access systematic uncertainties to likelihoods and diagnostics and preservation
ServiceX (S ®
: Boos f recast
_/ istogram y
aiﬂgmqtiable d
coffea Yikelihoods yadage

Hello world (1)

+ simple fit model defined via configuration file in YAML format

» required histograms are implicitly specified as region ® sample ® systematic

* cabinetry creates histograms, visualize data, creates a workspace and runs a fit

* try out the example in the

import

.config.read("config_example.yml")

folder = "histograms/"
.template_builder.create_histograms(

A . et Failile
tnetry_config, histo_folder, only

try.template_postprocessor.run(cabinet

abti y.visualize.data_MC(cabinetry_config, histo_folder, "figures/", prefit=True,
ethod="matplotlib")

.workspace.build(c

try. fit. fit(ws)

General:
Measurement: "My fit"
POI: "Signal strength"

Samples:
- Name: "Data"
Tree: "pseudodata"
Path: "ntuples/data.root"
Data: True

Name: "Background"

Tree: "background"

Path: "ntuples/prediction.root"
Weight: "weight"

Name: "Signal"

Tree: "signal"

Path: "ntuples/prediction.root"
Weight: "weight"

Regions:
- Name: "Signal Region"
Variable: "jet_pt"
Filter: "lep_charge > 0"
Binning: [0, 100, 200, 300, 400, 500]

Systematics:
- Name: "Luminosity"
OverallDown: -0.05
OverallUp: 0.05
Samples: ["Signal", "Background"]
Type: OVERALL

NormFactors:
- Name: "Signal strength"
Nominal: 1
Min: 0
Max: 5
Samples: "Signal"

https://github.com/alexander-held/cabinetry

(partial) output

Hello world (2)

.811171
.989652
.010105
.083871
.016181
.015840

0.950477
. 732744
.914896
.824391
.278680

.078683

.200473
.090191
.0 33
.069312
.069627
.087416
0.102159
.188015
.242512
.345761
.843117
.381934

events

visualization example (pre-fit)

140 4 I Background
Bl Signal

120 - 7/ /. Stat. uncertainty
& Data

100

80

60

40 1

20 A

0 200 400 600 800 1000
jet_pt

Status and goals

* cabinetry started a month ago

» feature set is being actively expanded

* goals:
» become a convenient tool for LHC-style binned template fit definition and steering
» leverage other existing IRIS-HEP tools for faster time-to-insight
- factorize as much as possible, and support multiple backends where sensible
» develop and promote API to help factorize tasks into independent modules
» declarative approach

- but allow analyzers to supply their own functions for key tasks that interact with the declarative configuration

* other existing tools:
» range of frameworks with similar scope exits: , many within ATLAS (HistFitter, TRExFitter, WSMaker, ...)

» want to provide a python / non-ROOT alternative, based on experience from existing tools

http://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

Getting data to cabinetry

* cabinetry makes requests to build histograms, which should be fulfilled by external backends
» need a common API

» simple uproot backend currently used as reference

* Challenges:
» defining the data location in a file type agnostic way
- how to deal with substructure in the file, what if the file is not a file but a location in memory?
» language for defining observables, cuts, weights
- using data [“MET”] > 100 or MET > 100 or ...
- implicit assumptions of how strings map to objects within the file

- may not need to support complex operations - this can be done in upstream tools

Years 3,4, 5

* year 3:
» obtain community feedback, promote community involvement in development
» converge on core design decisions
» expand feature set to cover most common use cases

» gather experience with fully featured LHC-style analysis

* years 4+5:
» move towards a stable product

» Integrate in IRIS-HEP analysis systems grand challenge

* cabinetry is
» a new effort aiming to interface many existing IRIS-HEP tools
» a modular, python-based approach to building workspaces for statistical inference with template fits
» both a library (e.g. workspace creation from histograms) and a framework (steering other tools)

» welcoming contributions and thoughts!

cabinetry steering execution

Statistical Statistical

Event selection,

systematic Histograms m.od.el Workspace analysis &
uncertainties RRILING diagnostics
I ~ - q
1=
i :
| = I " |

Backup

10

Fully declarative approach?

+ design of a declarative configuration that points to the right path for the data needed for any histogram?

» analyzers might store their data in many different structures

nominal/ .
. region_1/
signal.root . .
. signal_nominal. root
region_1 . . o
. signal_systematic_variation.root
region_2

background. root

region_2/
signal_nominal. root
signal_systematic_variation.root
background. root

looal
systematic_variation/
signal. root
region_1

loooll

» difficult to support any possible structure via pre-defined options

» more powerful approach: analyzers define their own option and provide a function to parse them

* see for more

11

https://github.com/alexander-held/cabinetry/issues/16

