
Kyle Cranmer1, Alexander Held1

1 New York University

IRIS-HEP retreat https://indico.cern.ch/event/896167
May 27, 2020

cabinetry

1

https://indico.cern.ch/event/896167

What is cabinetry?

• analyzers use cabinetry to design template fit models via a declarative configuration file

‣ analyzers specify selections for signal/control regions, (Monte Carlo) samples, systematic uncertainties

‣ cabinetry steers the histogram creation (region ⊗ sample ⊗ systematic)

‣using the histograms, cabinetry produces a workspace (serialized fit model)

‣ cabinetry steers statistical inference and provides diagnostics and visualization tools

• github: https://github.com/alexander-held/cabinetry/

• IRIS-HEP project page: https://iris-hep.org/projects/cabinetry.html
2

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

cabinetry steering execution

https://github.com/alexander-held/cabinetry/
https://iris-hep.org/projects/cabinetry.html

cabinetry within IRIS-HEP

• a declarative configuration steers cabinetry and its interactions with other tools

• data is delivered to cabinetry via e.g. ServiceX after coffea processing, or straight from uproot as an awkward array

• pyhf is used for inference

3

Hello world (1)

4

• simple fit model defined via configuration file in YAML format

‣ required histograms are implicitly specified as region ⊗ sample ⊗ systematic

• cabinetry creates histograms, visualize data, creates a workspace and runs a fit

• try out the example in the repository

https://github.com/alexander-held/cabinetry

Hello world (2)

5

(partial) output

visualization example (pre-fit)

Status and goals

• cabinetry started a month ago

‣ feature set is being actively expanded

• goals:

‣ become a convenient tool for LHC-style binned template fit definition and steering

‣ leverage other existing IRIS-HEP tools for faster time-to-insight

- factorize as much as possible, and support multiple backends where sensible

‣ develop and promote API to help factorize tasks into independent modules

‣ declarative approach

- but allow analyzers to supply their own functions for key tasks that interact with the declarative configuration

• other existing tools:

‣ range of frameworks with similar scope exits: CMS combine, many within ATLAS (HistFitter, TRExFitter, WSMaker, …)

‣want to provide a python / non-ROOT alternative, based on experience from existing tools

6

http://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

Getting data to cabinetry

• cabinetry makes requests to build histograms, which should be fulfilled by external backends

‣need a common API

‣ simple uproot backend currently used as reference

• Challenges:

‣ defining the data location in a file type agnostic way

- how to deal with substructure in the file, what if the file is not a file but a location in memory?

‣ language for defining observables, cuts, weights

- using data[“MET”] > 100 or MET > 100 or …

- implicit assumptions of how strings map to objects within the file

- may not need to support complex operations - this can be done in upstream tools

7

Years 3, 4, 5

• year 3:

‣ obtain community feedback, promote community involvement in development

‣ converge on core design decisions

‣ expand feature set to cover most common use cases

‣ gather experience with fully featured LHC-style analysis

• years 4+5:

‣move towards a stable product

‣ Integrate in IRIS-HEP analysis systems grand challenge

8

Summary

• cabinetry is

‣ a new effort aiming to interface many existing IRIS-HEP tools

‣ a modular, python-based approach to building workspaces for statistical inference with template fits

‣ both a library (e.g. workspace creation from histograms) and a framework (steering other tools)

‣welcoming contributions and thoughts!

9

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

cabinetry steering execution

Backup

10

Fully declarative approach?

• design of a declarative configuration that points to the right path for the data needed for any histogram?

‣ analyzers might store their data in many different structures

‣ difficult to support any possible structure via pre-defined options

‣more powerful approach: analyzers define their own option and provide a function to parse them

• see https://github.com/alexander-held/cabinetry/issues/16 for more

11

https://github.com/alexander-held/cabinetry/issues/16

