Prototyping and Deploying an Analysis
Facility at a USCMS Tier2

Mat Adamec, Ken Bloom, Oksana Shadura,
University of Nebraska, Lincoln

Garhan Attebury, Carl Lundstedt, Derek Wietzel
University of Nebraska Holland Computing Center

Matyas Selmeci
University of Wisconsin, Madison

Brian Bockelman
Morgridge Institute ...

Leveraging large data and data analysis tools from python to provide
an array-based syntax for manipulating HEP event data.

Stark contrast to venerable, well established event loop techniques.

Tremendous potential to fundamentally change the time-to-science in
HEP. '

Scales well horizontal

Cannot easily utilize current
analysis facilities (T2s) as the
analysis is not grid friendly, it's
meant to be quasi-interactive

" cofea - perormance (Wotvaton

The Present Challenge

- Analyze all LHC Run 2 data: O(10 billion events)

- Investigate data quality issues with fast time-to-insight

- Optimize complex (e.g. deep learning algorithms)

Multiply by O(1000) data analysts ..

1400

These challenges magnified
20x in HL-LHC

1000

MHSO06 * s

600 -

400 A

200

Nick Smith, CHEP 2019

1200 A

800 A

CPU seconds by Type

B Prompt Data
@ Non-Prompt Data
Il LHC MC

BN HL-LHC MC

B Analysis

NNNNNNNNNNNN
NNNNNNNNNNNNNN
OOOOOOOOOOOOOO
NNNNNNNNNNNNNN

sk

“Dask is a flexible library for parallel computing in Python.”

Think of Dask as run-time parallel + cluster plugin for
python

Easily installed via Conda as the module “distributed”.

NOT really designed with multi-user

. . . P User-facing entry
environments in mind | ctiene | AT
out-of-the-box. -

Integrates with HPC clusters Scheduler [t i e 10wt

running a variety of schedulers o
including SLURM & HTCondor —— ——— ==

cluster

via “dask-jobqueue”. Worker orkes Worker

Workers compute tasks / store and serv
computed results to other workers or

7 DASK

Emerging Facility Requirements

. Analysis Facilities must be (according to me):
- Easy to use for users

- Scalable (dynamically/automatically)
- Responsive/lnteractive

- Utilize currently deployed hardware/middleware
- Minimally intrusive for site administrators

- Get work (‘effort’ & CPU) accounted for by CMS

_/}i -

Usage Patterns Are Changing
Resources Should Change, Too

T2 Nebraska

User’s Laptop

Python | Browser

/l \\i
|| Dask Dask JupyterHub Instance | : | |
' || worker 1 || Scheduler || (shared) i 1 |HTCondor Worker :
| I A - Dask |
: Dask Jupyter |[E ! Worker E
' || Worker 8 k | v i
= P = v L .| HTCondor :
: iy o Scheduler i
i |__"CMS Analysis” pod i 1 |HTCondor Worker |
i P Dask E
: Lo Worker |
E > XCache P 5 HTCondor |
iKubernetes (shared) ! i_________________________“""“_"“qu|_:
i Cluster E

*Diagram by Brian Bockelman

D T2 Nebraska

User’s Laptop
Python | Browser
/ \\i
JupyterHub Instance | i |
Dask Dask i
Woniseﬂ > Sch:csiuler - (shared) . HTCondor Worker
i ! i Dask
Dask Jupyter E/ | Worker
Worker 8 kernel]
or erP erne " . HTCondor
er-user 1 Scheduler
CMS Analysis” pod | 1 |HTCondor Worker
AW Dask
— | \:\ Worker
XCache !
> o
Kubernetes (shared) E

*Diagram by Brian Bockelman

User’s Laptop

Python | Browser
/

Dask Dask
Worker 1 ™ Scheduler M

Dask Jupyter
Worker 8 kernel

“C

Per-user
MS Analysis” pod

9?}?'

In Areas

' XCache
Kubernetes ® (shared)

| [HTCondor Worker |
| Dask E
i Worker !
i " HTCondor E
i Scheduler i
| | HTCondor Worker E
! Dask |
: Worker E
i HTCondor |

certalin Areas

User’s Laptop User Management at the T2s is (and will
continue to be) a non-starter. User

Python | Browser _
/ \ ' I access management will have to be done at

need to be done long term.

e / ___________ . S U _____Lanother administrative level (SSO)

: |] 1 !

(|| Dask || Dask || |Jupytertiud] A T2 admins have Limited Experience
JlEl e ‘ < — with Kubernetes. (But solid experience with
: Dask Jupyter | [] , < Docker.)

i || Worker 8 kernel

; Per-user Performance can be sensitive to caching,

| OMS Analysls” pod integration and performance studies

’ XCach
Kubernetes (!) (sharec Not clear how well things will perform

@L‘EIEL_ - = P using AAA + batch.

Little to no operational experience at
Nebraska T2 for JupyterHub management.
Our colleagues in Holland have
experience using it for our HPC clusters.

nt: Sorted

User’s Laptop User Management at the T2s is not feasible.
User access management will have to be

Python | Browser
7 \ ' I done at another administrative level (SSO)

|| Dask Dask |

, | | HTCondor V
|| Worker 1 [| Scheduler [i o
. : Dask
: Dk Jupyter L : ! Worke
E Worker 8 kernel : i

i Per-user E |

| “CMS Analysis” pod ' [HTCondor V
i i : Dask
| ¢ Worke

' XCache -
\ Kubernetes ® (shared))

Initial deploy uses CiLogon and a whitelist

™

User’s Laptop

Browser

Dask ~ Dask
Worker 1 Scheduler

“CMS Analysis” pod

Dask Jupyter
Worker 8 kernel
Per-user

E

f
JupyterHub I

(sharec

P

|
J

' " XCach
' Kubernetes ® (sharec
i Cluster

les: Sorted

Inexperience with JupyterHub

Excellent documentation and institutional
knowledge beyond the T2 admins got us

by..

User’s Laptop

Python | Browser
[\

\

orted

Dask Dask
Worker 1 ™ Scheduler ™

Dask Jupyter
Worker 8 kernel

“ C

Per-user
MS Analysis” pod

Inexperience with Kubernetes -
______________ !
HTCondor V |
Dask /
Worke

HTCondor V
Dask

' Kubernetes (! S
A5

XCache
(shared)

Worke

Utilizing Z2JH and helm it was relatively easy
to.deploy a framework of JupyterHub

to Prototype
(Kubernetes Cluster)

Role Description CPU RAM
masters 2 x VMs living on old Dell machines 2 8GB

workers 4 x Dell R710s with disks for Rook.i0 24 96GB
workers 3 x Sun X2200 (12 years old) 8 32GB
workers 5 x Sun X2200 (12 years old) 8 24GB
workers 2 X 4-1n-2 Supermicro 16 64GB
workers 1 x 1U Supermicro 8 32GB

User’s Laptop

Browser

I N

Dask ™ Dask
Worker 1 Scheduler

JupyterHub Instance
(shared)

Dask Jupyter

!

Worker 8 kernel
Per-user

“CMS Analysis” pod

Kubernetes

! Cluster

IS a reality

Deployed Jupyterhub on bare OS to learn
Jupyterhub and CiLogon OAuth.

Enabled token authentication in our Condor
infrastructure

Second was to setup a kubernetes cluster and
use the “Zero 2 JupyterHub” (z2jh) project to put
together a basic JupyterHub instance.

We then developed a highly customized “CMS
Analysis” container with all the necessary
dependencies.

JupyterHub uses the KubeSpawner to create
new pods. We utilize a pod customization hook
to create secrets and services so the pod:
o Can expose the Dask scheduler to the
outside world.
o Can authenticate with services like
HTCondor and XRootD.

*Diagram by Brian Bockelman

S a reality

Per-user

“GMS Analysis” pod the local site (using environment variables)

o Token authorization is automatically used &

Wsers Laptop o Next, we needed to integrate XRootD!
Py}hon Brow\ser o Each pod’s unique secret includes an
2. Connect from/terminal 1.S\tiart Instance auto-generated macaroon authorizing the pod to

{a—— S — R—— | access files at the site XCache server.
|l Dask Dask JupyterHub Instance
|| Worker 1| Scheduler (shared) : :
L R e Wrote a custom XRootD client plugin so whenever the
|| Dask Jupyter prefix root://xcache/ is used, then:

Worker 8 kernel ; o The hostname is replaced with the correct one for

ouer embedded in the URL.
! XCache e A custom XCache container was made to make GSI
(shared) auth optional and allow token auth after an
\ anonymous login.

See the plugin code:
https://github.com/bbockelm/xrdcl-authz-plugin

*Diagram by Brian Bockelman

https://github.com/bbockelm/xrdcl-authz-plugin

User’s Laptop

| Python | Browser |

| JupyterHub Instance | | i |

Dask Dask P i
i Worker 1| Scheduler [['] (shared) ;i HIGondor Workey :
: ! E Dask i
1| Dask Jupyter = ! Worker E
! || Worker 8 kernel ol .
| =2 B — VLY HTCondor |
I S P Scheduler i
! CSiAnalysia: pad | | |HTCondor Worker i
i L Dask i
| E] Worker E
i - XCache ! : | HTCondor i
' Kubernetes (shared) e PO
iCIuster E

reality

Finally, we use a slightly-patched version
of the HTCondorCluster integration from
dask to allow auto-scaling out to the local
HTCondor pool.

Jobs run in the container on the
HTCondor worker node; HTCondor
exposes an incoming port to provide the
necessary connectivity.

All of this is being incorporated into a

Helm chart -- many rough edges, but can
eventually be portable to other sites.

*Diagram by Brian Bockelman

0 Setup

JH setup: https://qgithub.com/clundst/jhub (except specific secrets)

Docker images for Dask Scheduler and Worker:

https://github.com/oshadura/coffea-casa
o https://hub.docker.com/r/oshadura/coffea-casa

o https://hub.docker.com/r/oshadura/coffea-casa-analysis

Docker image for JupyterHub (to get macaroons in the launch env)
https://qithub.com/clundst/jhubDocker

Showcase: https://github.com/mat-adamec/cmsaf-jh_showcase

https://github.com/clundst/jhub
https://github.com/oshadura/coffea-casa
https://hub.docker.com/r/oshadura/coffea-casa
https://hub.docker.com/r/oshadura/coffea-casa-analysis
https://github.com/clundst/jhubDocker
https://github.com/mat-adamec/cmsaf-jh_showcase

e setup

e https://github.com/bbockelm/xrdcl-authz-plugin

$ BEARER_TOKEN_FILE=~/projects/xrdcl-authz-plugin/xcache_token
XCACHE_HOST=red-xcachel.unl.edu

XRD_PLUGINCONFDIR=~/projects/xrdcl-authz-plugin/build/release_dir/etc/xr
ootd/client.plugins.d/ xrdcp -f
root://xcache//store/data/Run2017B/SingleElectron/MINIAOD/31Mar2018-v1/60000/9EOF8458-EA37 -
E811-93F1-008CFAC919F0.root /dev/null

Looking for token in file /home/cse496/bbockelm/projects/xrdcl-authz-plugin/xcache_token
[3.65GB/3.65GB][100%] [==][934.5MB/s]

https://github.com/bbockelm/xrdcl-authz-plugin
http://red-xcache1.unl.edu/

. Work remains.

. Some aspects of the HTCondor integration are slap-dash

. Integrating the native dask scheduler with condor jobs
would make scaling trivial.

. Lots of scaling tests needed, both in terms of the jobs and
the user base.

. Deployment needs cleaned up and site specific
customizations need removed and made more
maintainable.

Backup

@ UNL

e JH is launched using Helm charts (together with users secrets)

Z Jupyterhub

CMS Analysis Facility @ T2 _US_ Nebraska

Authorized CMS Users Only!

To login into Jupyter, use your CiLogon credentials.. |f you would like an account or need assistance, please email HCC Support.

Useful Links

e HCC Support Pages

News
« New CMS Analysis Facility @ T2_US_Nebraska

Authorized CMS Users Only:
Sign in with ClLogon

CiLogon

Consent to Attribute Release

cmsaf-jh.unl.edu requests access to the following information. If you do not approve this request, do not proceed.

 Your ClLogon user identifier
* Your email address
* Your username and affiliation from your identity provider

Select an Identity Provider

CERN~ @

H Remt 1yne 1o search

LEIHUU UE COWUIUS IVIVHELQNUD y FilaluIEIuS

Centro de Investigacion Cooperativa en Biomateriales
By selecting"Logon CENUrO de Investigaciones Energeticas, Medioambientales y Tecnologicas
Centro de Investigacion y Tecnologia Agroalimentaria de Aragén

Centro de Supercomputacion de Galicia

Centro Informatico Cientifico de Andalucia

Centro Nacional de Investigaciones Cardiovasculares

Centro Nacional del Hidrogeno

Centrum Wiskunde & Informatica

CEREQ - Centre d'Etudes et de Recherches sur les Qualifications

CERN

CESNET

AETEM Fantea Aa Taanalasia Minacal

ith CMS Auth.
rn.ch/

http://oauth.web.cern.ch/

e Docker image starting JupyterLab is integrated with
HTCondor Dask Scheduler communicating with T3
o For this purpose we use Dask Labextention, which is
iIntegrated in the Docker image

Server Options

® Coffea Base Image
Oksana's build with coffea/dask/condor and cheese

Minimal environment

o
To avoid too much bells and whistles: Python.
@) Datascience environment
If you want the additional bells and whistles: Python, R, and Julia.
@) Spark environment

The Jupyter Stacks spark image!

Clustering on Host

File Edit View Run Kernel Git Tabs Settings Help

X | ;¢ Dask Workers X | [adl1.ipynb ®

dask/dashboard/8f1fb6c5-3e5c-4e73-b173-f18b" Q § B Terminal 4
'3+ X O M » m C » Code v @© git

' mosm@:;‘]u&w&s‘l

- PROGRESS i H‘GRU,

[471:. output = processor.run_uproot_job(fileset,
treename="Events’,
processor_instance=Processor(),
executor=processor.dask_executor,
executor_args={'client': client},
chunksize = 2500000)

]bwsmemm’ [HEHEp S R] | 100% Completed | 36.3s

[év i 1 (481: hist.plotld(output['MET'], overlay='dataset', fill opts={'edgecolor': (9,0,0,0.3), 'alpha': ©.8})
CLUSTERS (C + NEW

N

/opt/conda/1lib/python3.7/site-packages/mplhep/_deprecate.py:56: DeprecationWarning: kwarg "densitym
on "histplot" is deprecated and may be removed in future versions: "unit"mode is not useful

LocalCluster 2 return func(*args, **kwargs)

Scheduler Address: tcp://127.0.0.1:42175 4 <matplotlib.axes._subplots.AxesSubplot at @x7ff6ccb98110>
Dashboard URL: http:// 0.0.1:8787/status

Number of Cores: 8 30 1e6

Memory: 33.73 GB B MET

Number of Workers: 4

<>

0 20 40 60 80 100
MET [GeV]

[401: for key, value in output['cutflow'].items():
print(key, value)

all events 53446198
number of chunks 21

ecrets

All secrets are available in the directory /etc/cmsaf-secrets at container startup
(but doesn’t exist at build time)

The BEARER TOKEN _FILE environment variable is going to be set to
/etc/cmsaf-secrets/bearer _token, matching what's expected in the XrdCI plugin.
/etc/cmsaf-secrets/condor _token is a condor IDTOKEN useful for submitting to
T3.

/etc/cmsaf-secrets/ca.key is a CA private key useful for Dask
/etc/cmsaf-secrets/ca.pem is a CA public key useful for Dask
/etc/cmsaf-secrets/hostcert.pem is a host certificate and private key useful for
the Dask scheduler.

/etc/cmsaf-secrets/usercert.pem is a user certificate and private key useful for
the Dask workers.

jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu : <129.93.239.166:9618?... @ ©05/25/20 19:46:47
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
cms-jovyan ID: 1586949 5/23 19:21 1 1586949.0

Total for query: 1 jobs; 1 completed, © removed, © idle, © running, © held,
© suspended

Total for cms-jovyan: 1 jobs; 1 completed, © removed, © idle, © running, ©
held, @ suspended

Total for all users: 14313 jobs; 1 completed, © removed, 14310 idle, 2
running, © held, © suspended

= JupyterLab x|+

(€)»> ¢ & | @ & https://cmsaf-jh.unl.edu/user/oksana.shadura@cern.ch/lab? 80% | @ W noee® =
File Edt View Run Kemel Git Tabs Settings Help
= " L] * [¢ @ Terminal 1 X | ® adit.ipynb
m / coffea-casa-example / B + XO O » = C » Ccode v @ e Python3 O
O Name - Last Modified !
2 from distributed. svcuu(import Securit:
- data 22 minutes ago fron coffea import nist s 2
m logs. 21 minutes ago from coff ! objects import JaggedC: ray
o import coffea.processor as processor
FS @ adltpy 22 minutes ago from dask.distributed import Client, LocalCluster
| coffea-casa. 22 minutes ago from dask_jobqueue import HTCondorCluster
from dask_jobqueue.htcondor import HTCondorJob
@ coffea-casa... 22 minutes ago =
@ ¥ README.md 22 minutes ago fileset =
‘Jets': (‘?Hes" ['root://ecspublic.cern.ch//eos/root-ecs/benchmark/Run2012B SingleMu.root'],
reename’: ‘Events'
5]
}
h # This program plots an event-level variable (in this case, MET, but switching it is as easy as a dict-key change). It also demonstrates an easy use of the book-keeping cutflow tool, to keep track of the number of events processed.
The processor class bundles our data analysis together while giving us some helpful tools. It also leaves looping and chunks to the framework instead of us.
O class METProcessor (processor.ProcessorABC):
__init_ |
Bins and :ategcnes for the histogram are defined here. For format, see https://coffeateam.github.lo/coffea/stubs/coffea.hist.hist tools.Hist.html & https://coffeateam.github.io/coffea/stubs/coffea.hist.hist tools.Bin. html
self. column: T |
* dansetinxls nist.ca?("ﬂﬂnse!'. ixhil
[= hist.Bin("MET", "MET [Gev]", 50, @, 100}
The accumulator keeps our data chunks together for histogramming. It also gives us cutflow, which can be used to keep track of data.
self. accumulator = processor.dict_accumulator({
‘MET': hist.Hist("Counts", dataset _axis, MET axis),
‘cutflow': processor. de'un\ldxcliac:\muhlor(iM)
b
@property
def accumulator(self):
rn self. accumulator
@property
def columns(self):
return self. columns
def process(self, df):
output = self.accumulator.identity()
This is where we do our actual analysis. The df has dict keys equivalent to the TTree's.
dataset = df['dataset’']
MET = df['MET pt']
We can define a new key for cutflow (in this case 'all events'). Then we can put values into it. We need += because it's per-chunk (demonstrated below)
output['cutflow']['all events'] += MET.size
output['cutflow']['number of chunks'] += 1
This fills our histogram once our data is collected. Always use .flatten() to make sure the array is reduced. The output key will be as defined in _ init for self. accumulator; the hist key ('MET=') will be defined in the bin.
output['MET'].fill(dataset=dataset, MET=MET.flatten())
return output
def postprocess(self, accumulator):
return accumulator
L sec_dask = Security(ﬂs ca_file='/etc/cmsaf-secrets/ca.pem’,
/etc/cmsaf-secrets/usercert.pem’,
t\s ,_worker_key='/etc/cnsaf-secrets/userkey.pen',
tls_: 5(bedu\er cert='/etc/cmsaf-secrets/hostcert.pem',
tls_ schedu\er key='/etc/cmsaf-secrets/hostkey.pem’,
require_encryption=True)
HTCondorJob. submit_command = "condor_submit -spool"
cluster = HTCondorCluster{cores=4,
scheduler __options= (‘dashboard_address":"8786","port":8787, "external address": "129.93.183.33:8787"},
HTCondor submit script
job_ exlra"{ ‘'universe”: "docker", # =>Brian's test
Generated in coffea-casa:latest
#"encrypt_input files /etc/cmsaf-secrets/xcache token
#"docker _networ “host",
"docker image": ”oshadura/coffea casa-analysis:0.1.1", # or docker image # =>Brian's test
"container service names": "d:
"dask_container port' 737
“should transfer files": "YES",
"when to transfer output": "ON EXIT"
)
distributed.scheduler - INFO - Clear task state
distributed.scheduler - INFO - Scheduler tcp://192.168.49.178:8787
distributed.scheduler - INFO - dashboard a
1M1 @ Python3|idle Saving completed

Mode: Command @ Ln1,Col 1 _adiLipynb

= JupyterLab
€)» e 0

= File Edt View Run Kemel

¥ 0 ¢# B & & O O @#

+ ®
W/ coffea-casa-example |
Name
- data
 logs.

2 adllpy
[coffea-casa-nanotestipynb
@ coffea-casa-nanotest.py

README.md

x|+

|© & https://cmsaf-jh.unl.edu/user/oksana.shadura@cern.ch/lab?

Git Tabs Setfngs Help

ES c ©

x Last Modified
16 minutes ago

15 minutes ago

16 minutes ago

16 minutes ago
16 minutes ago

16 minutes ago

@ Terminal 1
B + X

adit ipynb
fH [» m C » code v O e

SortedDict({})
cluster. scale(jobs=16)

client = Client(cluster)#, securityssec dask)

distributed.core - INFO - Event loop was unresponsive in Scheduler for 36.31s. This is often caused by long-running GIL-holding functions or moving large chunks of data. This can cause timeouts and instability.

distributed.scheduler - INFO - Register worker <Worker 'tcp://129.93.182.169:32769', name: @, memory: ©, processing:

distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.169:32769

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register worker <Worker 'tcp://129.93.182.61:32769', name: htcondor--1981987.8--, memory: 6, processing: 6>
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.61:32769

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register worker <Worker ‘tcp://129.93.182.12:32777', name: htcondor--1981986.0--, memory: 0, processing: 6>
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.12:32777

distributed.core - INFO - sumnu established connection

distributed, scheduler - INFO - Receive client : Client. £7-11

distributed.core - INFO - surnng established connectio

/opt/conda/1ib/python3.7/site-packages/distributed-2.16. m 9f66edas.dirty-py3.7.egg/distributed/client.py:1115: VersionMismatchiWarning: Mismatched versions found

distributed

| | version |

.16.0+0.9f66eda86.dirty
+16.0+0.0f66eda86. dirty

client 12
|2
[2.17.
12
12

|

| scheduler

1 : //119 93.182.12:
| t

|

up //lzs 931182.6

1]
.17.0
17.0

warnings. sion nodule. ["warning]))

#cachestrategy = 'dask-worker'
exe a

‘client': client,
gty L e straten

#'savenetrics':

R Goikar: afFinity £ Trua T cachust categy s iot Nona wise) False;

}
output = processor.run uproot job(fileset,
cename = 'Events
processor_instance = METProcessor(),
executor = processor.dask_executor,
executor args = exe args

[] | 0% Completed | ©.4s

distributed, scheduler - INFO - Register worker <Worker 'tcp://129.93.182.61:32768', name: htcondor--1981985.0--, memory: 0, processis
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.61:32768

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register worker <Worker 'tcp://129.93.182.12:32776', name: htcondor--1981984.0--, memory: 0, processing: 0>
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.12:32776

distributed.core - INFO - Starting established connection

i | 0% Completed | 0.5s

distributed.scheduler - INFO - Reglster worker torker tcp://129.03.162.12:32178" nane: htcondor--1981998.0--, mesory: O, processing: &>
distributed, scheduler - INFO - Starting worker compute stream, tcp://129.93.182.12:32778

distributed.core - INFO - smung established connection

| 160% Completed | Inin 6.1s

Generates a 1D histogram from the data output to the 'MET' Key. fill opts are optional, m fill the graph (default is a line).
hist.plotld(output['MET'], overlay='dataset', fill opts={'edgecolor': (0,0,0,0.3), 'alpha': 0.8})
/opt/conda/1ib/python3. 7/51(: -packages/mplhep/_deprecate.py:56: DeprecationWarning: kwarg "densitymode” in function "histplot" is deprecated and may be removed in future version:
return func(*args, **kwal
mn\p\onnz.axes._subp\a(s.nxesSubnlol at x716d61d2cadex>
1e6

"unit"mode is not useful

= s

0 ©
MET (Gev]

: # Easy way to print all cutflow dict values. Can just do print(output['cutflow']["KEY NAME"]) for one.

for key, value in output['cutflow'].items()
print (key, value)

all events 53446198

80%

noee® %

pythons O

number_of chunks 534

jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu : <129.93.239.166:96187... @ 05/27/20 08:58:07
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

cms-jovyan ID: 1981982 5/27 08:22 _ _ _ 11981982.0
cms-jovyan ID: 1981983 5/27 08:22 _ _ _ 11981983.0
cms-jovyan ID: 1981984 5/27 08:39 _ 1 _ 11981984.0
cms-jovyan ID: 1981985 5/27 08:40 _ 1 _ 11981985.0
cms-jovyan ID: 1981986 5/27 08:51 _ 1 _ 11981986.0
cms-jovyan ID: 1981987 5/27 08:51 _ 1 _ 11981987.0
cms-jovyan ID: 1981988 5/27 08:51 _ 1 _ 11981988.0
cms-jovyan ID: 1981990 5/27 08:51 _ 1 _ 11981990.0

cms-jovyan ID: 1981991 5/27 08:51 11981991.0

cms-jovyan ID: 1981992 5/27 08:51 _ 1 _ 11981992.0
cms-jovyan ID: 1981993 5/27 08:51 _ 1 _ 11981993.0
cms-jovyan ID: 1981994 5/27 08:51 _ 1 _ 11981994.0
cms-jovyan ID: 1981995 5/27 08:51 _ 1 _ 11981995.0
cms-jovyan ID: 1981996 5/27 08:51 _ 1 _ 11981996.0
cms-jovyan ID: 1981997 5/27 08:51 _ 1 _ 11981997.0
cms-jovyan ID: 1981998 5/27 08:51 _ 1 _ 11981998.0
cms-jovyan ID: 1981999 5/27 08:51 _ 1 _ 11981999.0
cms-jovyan ID: 1982000 5/27 08:51 _ 1 _ 11982000.0
cms-jovyan ID: 1982001 5/27 08:51 _ 1 _ 1 1982001.0

cms-jovyan ID: 1982002 5/27 08:51 11982002.0

cms-jovyan ID: 1982003 5/27 08:51 _ 1 _ 11982003.0
cms-jovyan ID: 1982004 5/27 08:51 _ 1 _ 11982004.0
cms-jovyan ID: 1982005 5/27 08:51 _ 1 _ 11982005.0

Total for query: 23 jobs; 4 completed, 0 removed, 0 idle, 19 running, 0 held, O suspended
Total for cms-jovyan: 23 jobs; 4 completed, O removed, 0 idle, 19 running, 0 held, 0 suspended
Total for all users: 418 jobs; 4 completed, 0 removed, 1 idle, 411 running, 2 held, 0 suspended

