Prototyping and Deploying an Analysis Facility at a USCMS Tier2

Mat Adamec, Ken Bloom, Oksana Shadura, University of Nebraska, Lincoln

Garhan Attebury, Carl Lundstedt, Derek Wietzel University of Nebraska Holland Computing Center

Mátyás Selmeci University of Wisconsin, Madison

> Brian Bockelman Morgridge Institute

COFFEA - Columnar Object Framework For Effective Analysis

- Leveraging large data and data analysis tools from python to provide an array-based syntax for manipulating HEP event data.
- Stark contrast to venerable, well established event loop techniques.

Tremendous potential to fundamentally change the time-to-science in

HEP.

- Scales well horizontal
- Cannot easily utilize current analysis facilities (T2s) as the analysis is not grid friendly, it's meant to be quasi-interactive

coffea – performance (Motivation)

- The Present Challenge
 - Analyze all LHC Run 2 data: O(10 billion events)
 - Investigate data quality issues with fast time-to-insight
 - Optimize complex (e.g. deep learning algorithms)
- Multiply by O(1000) data analysts
- These challenges magnified 20x in HL-LHC

Nick Smith, CHEP 2019

Dask

- "Dask is a flexible library for parallel computing in Python."
- Think of Dask as run-time parallel + cluster plugin for python
- Easily installed via Conda as the module "distributed".
- NOT really designed with multi-user environments in mind out-of-the-box.
- Integrates with HPC clusters running a variety of schedulers including SLURM & HTCondor via "dask-jobqueue".

Workers compute tasks / store and serve computed results to other workers or clients

Emerging Facility Requirements

- Analysis Facilities must be (according to me):
 - Easy to use for users
 - Scalable (dynamically/automatically)
 - Responsive/Interactive
 - Utilize currently deployed hardware/middleware
 - Minimally intrusive for site administrators
 - Get work ('effort' & CPU) accounted for by CMS

Usage Patterns Are Changing Resources Should Change, Too

Proposed Analysis @ T2 Nebraska

Proposed Scale Up @ T2 Nebraska

Problem/Uncertain Areas

Problem/Uncertain Areas

User Management: Sorted

JupyterHub Newbies: Sorted

K8s Newbies: Sorted

Hardware Dedicated to Prototype (Kubernetes Cluster)

Role	Description	CPU	RAM
masters	2 x VMs living on old Dell machines	2	8GB
workers	4 x Dell R710s with disks for Rook.io	24	96GB
workers	3 x Sun X2200 (12 years old)	8	32GB
workers	5 x Sun X2200 (12 years old)	8	24GB
workers	2 x 4-in-2 Supermicro	16	64GB
workers	1 x 1U Supermicro	8	32GB

Making this a reality

- Deployed Jupyterhub on bare OS to learn Jupyterhub and CiLogon OAuth.
- Enabled token authentication in our Condor infrastructure
- Second was to setup a kubernetes cluster and use the "Zero 2 JupyterHub" (z2jh) project to put together a basic JupyterHub instance.
- We then developed a highly customized "CMS Analysis" container with all the necessary dependencies.
- JupyterHub uses the KubeSpawner to create new pods. We utilize a pod customization hook to create secrets and services so the pod:
 - Can expose the Dask scheduler to the outside world.
 - Can authenticate with services like HTCondor and XRootD.

Making this a reality

Next, we needed to integrate XRootD!

 Each pod's unique secret includes an auto-generated macaroon authorizing the pod to access files at the site XCache server.

Wrote a custom XRootD client plugin so whenever the prefix root://xcache/ is used, then:

- The hostname is replaced with the correct one for the local site (using environment variables)
- Token authorization is automatically used & embedded in the URL.

A custom XCache container was made to make GSI auth optional and allow token auth after an anonymous login.

See the plugin code:

AAA

https://github.com/bbockelm/xrdcl-authz-plugin

Making this a reality

- Finally, we use a slightly-patched version of the HTCondorCluster integration from dask to allow auto-scaling out to the local HTCondor pool.
 - Jobs run in the container on the HTCondor worker node; HTCondor exposes an incoming port to provide the necessary connectivity.
 - All of this is being incorporated into a Helm chart -- many rough edges, but can eventually be portable to other sites.

CMSAF @ UNL demo Setup

- JH setup: https://github.com/clundst/jhub (except specific secrets)
- Docker images for Dask Scheduler and Worker: https://github.com/oshadura/coffea-casa
 - https://hub.docker.com/r/oshadura/coffea-casa
 - https://hub.docker.com/r/oshadura/coffea-casa-analysis
- Docker image for JupyterHub (to get macaroons in the launch env)
 https://github.com/clundst/jhubDocker
- Showcase: https://github.com/mat-adamec/cmsaf-jh-showcase

CMSAF @ UNL XCache setup

https://github.com/bbockelm/xrdcl-authz-plugin

Conclusions

- . Work remains.
- Some aspects of the HTCondor integration are slap-dash
- Integrating the native dask scheduler with condor jobs would make scaling trivial.
- Lots of scaling tests needed, both in terms of the jobs and the user base.
- Deployment needs cleaned up and site specific customizations need removed and made more maintainable.

Backup

JupyterHub + JupyterLab + Dask setup @ UNL

JH is launched using Helm charts (together with users secrets)

CMS Analysis Facility @ T2_US_Nebraska

Authorized CMS Users Only!

To login into Jupyter, use your CiLogon credentials.. If you would like an account or need assistance, please email HCC Support.

Useful Links

HCC Support Pages

News

New CMS Analysis Facility @ T2_US_Nebraska

Authorized CMS Users Only: Sign in with ClLogon

CILogon

We will likely replace this with CMS Auth. http://oauth.web.cern.ch/

Login

- Docker image starting JupyterLab is integrated with HTCondor Dask Scheduler communicating with T3
 - For this purpose we use Dask Labextention, which is integrated in the Docker image

Server Options

•	Coffea Base Image Oksana's build with coffea/dask/condor and cheese
0	Minimal environment
	To avoid too much bells and whistles: Python.
0	Datascience environment
	If you want the additional bells and whistles: Python, R, and Julia.
0	Spark environment
	The Jupyter Stacks spark image!

Can Run Using Built-in Dask Clustering on Host CPUs

CMSAF @ UNL secrets

- All secrets are available in the directory /etc/cmsaf-secrets at container startup (but doesn't exist at build time)
- The BEARER_TOKEN_FILE environment variable is going to be set to /etc/cmsaf-secrets/bearer_token, matching what's expected in the XrdCl plugin.
- /etc/cmsaf-secrets/condor_token is a condor IDTOKEN useful for submitting to T3.
- /etc/cmsaf-secrets/ca.key is a CA private key useful for Dask
- /etc/cmsaf-secrets/ca.pem is a CA public key useful for Dask
- /etc/cmsaf-secrets/hostcert.pem is a host certificate and private key useful for the Dask scheduler.
- /etc/cmsaf-secrets/usercert.pem is a user certificate and private key useful for the Dask workers.

HTCondor integration

```
jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu: <129.93.239.166:9618?... @ 05/25/20 19:46:47

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

cms-jovyan ID: 1586949 5/23 19:21 _ _ _ 1 1586949.0

Total for query: 1 jobs; 1 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

Total for cms-jovyan: 1 jobs; 1 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

Total for all users: 14313 jobs; 1 completed, 0 removed, 14310 idle, 2 running, 0 held, 0 suspended
```

Demo backup

Demo backup

Demo backup

jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app\$ condor_q

Schedd: t3.unl.edu: <129.93.239.166:9618? @ 05/27/20 08:58:07									
OWNER BATCH_NAME	SUBMIT	TED	DONE	RUN	IDLE	TOTAL JOB_IDS			
cms-jovyan ID: 1981982	5/27 08:22	_	_		_	1 1981982.0			
cms-jovyan ID: 1981983	5/27 08:22	_	_		_	1 1981983.0			
cms-jovyan ID: 1981984	5/27 08:39	_	1		_	1 1981984.0			
cms-jovyan ID: 1981985		_	1		_	1 1981985.0			
cms-jovyan ID: 1981986		_	1		_	1 1981986.0			
cms-jovyan ID: 1981987		_	1		_	1 1981987.0			
cms-jovyan ID: 1981988		_	1		_	1 1981988.0			
cms-jovyan ID: 1981990		_	1		_	1 1981990.0			
cms-jovyan ID: 1981991		_	_		_	1 1981991.0			
cms-jovyan ID: 1981992	5/27 08:51	_	1		_	1 1981992.0			
cms-jovyan ID: 1981993	5/27 08:51	_	1		_	1 1981993.0			
cms-jovyan ID: 1981994	5/27 08:51	_	1		_	1 1981994.0			
cms-jovyan ID: 1981995	5/27 08:51	_	1		_	1 1981995.0			
cms-jovyan ID: 1981996	5/27 08:51	_	1		_	1 1981996.0			
cms-jovyan ID: 1981997	5/27 08:51	_	1		_	1 1981997.0			
cms-jovyan ID: 1981998	5/27 08:51	_	1		_	1 1981998.0			
cms-jovyan ID: 1981999	5/27 08:51	_	1		_	1 1981999.0			
cms-jovyan ID: 1982000	5/27 08:51	_	1		_	1 1982000.0			
cms-jovyan ID: 1982001	5/27 08:51	_	1		_	1 1982001.0			
cms-jovyan ID: 1982002	5/27 08:51	_	_		_	1 1982002.0			
cms-jovyan ID: 1982003	5/27 08:51	_	1		_	1 1982003.0			
cms-jovyan ID: 1982004	5/27 08:51	_	1		_	1 1982004.0			
cms-jovyan ID: 1982005	5/27 08:51	_	1		_	1 1982005.0			

Total for query: 23 jobs; 4 completed, 0 removed, 0 idle, 19 running, 0 held, 0 suspended Total for cms-jovyan: 23 jobs; 4 completed, 0 removed, 0 idle, 19 running, 0 held, 0 suspended Total for all users: 418 jobs; 4 completed, 0 removed, 1 idle, 411 running, 2 held, 0 suspended