
Prototyping and Deploying an Analysis
Facility at a USCMS Tier2

Mat Adamec, Ken Bloom, Oksana Shadura,
University of Nebraska, Lincoln

 Garhan Attebury, Carl Lundstedt, Derek Wietzel
University of Nebraska Holland Computing Center

Mátyás Selmeci
University of Wisconsin, Madison

Brian Bockelman
Morgridge Institute

COFFEA - Columnar Object Framework For Effective Analysis

● Leveraging large data and data analysis tools from python to provide
an array-based syntax for manipulating HEP event data.

● Stark contrast to venerable, well established event loop techniques.

● Tremendous potential to fundamentally change the time-to-science in
HEP.

● Scales well horizontal

● Cannot easily utilize current
analysis facilities (T2s) as the
analysis is not grid friendly, it's
meant to be quasi-interactive

coffea – performance (Motivation)
● The Present Challenge

− Analyze all LHC Run 2 data: O(10 billion events)

− Investigate data quality issues with fast time-to-insight

− Optimize complex (e.g. deep learning algorithms)

● Multiply by O(1000) data analysts

● These challenges magnified
 20x in HL-LHC

Nick Smith, CHEP 2019

Dask
● “Dask is a flexible library for parallel computing in Python.”

● Think of Dask as run-time parallel + cluster plugin for
python

● Easily installed via Conda as the module “distributed”.

● NOT really designed with multi-user
environments in mind
out-of-the-box.

● Integrates with HPC clusters
running a variety of schedulers
including SLURM & HTCondor
via “dask-jobqueue”.

● Analysis Facilities must be (according to me):
− Easy to use for users
− Scalable (dynamically/automatically)
− Responsive/Interactive
− Utilize currently deployed hardware/middleware
− Minimally intrusive for site administrators
− Get work (‘effort’ & CPU) accounted for by CMS

Emerging Facility Requirements

Usage Patterns Are Changing
Resources Should Change, Too

USERS

SITES

Proposed Analysis @ T2 Nebraska

*Diagram by Brian Bockelman

Proposed Scale Up @ T2 Nebraska

*Diagram by Brian Bockelman

8 Core “CMS Analysis pod” created
on login.

Can scale up to available Condor
Slots on the T2 resource.

Problem/Uncertain Areas

Problem/Uncertain Areas
User Management at the T2s is (and will
continue to be) a non-starter. User
access management will have to be done at
another administrative level (SSO)

T2 admins have Limited Experience
with Kubernetes. (But solid experience with
Docker.)

Performance can be sensitive to caching,
integration and performance studies
need to be done long term.

Not clear how well things will perform
using AAA + batch.

Little to no operational experience at
Nebraska T2 for JupyterHub management.
Our colleagues in Holland have
experience using it for our HPC clusters.

User Management: Sorted
User Management at the T2s is not feasible.
User access management will have to be
done at another administrative level (SSO)

Initial deploy uses CiLogon and a whitelist

JupyterHub Newbies: Sorted

Excellent documentation and institutional
knowledge beyond the T2 admins got us
by..

Inexperience with JupyterHub

K8s Newbies: Sorted

Inexperience with Kubernetes

Utilizing Z2JH and helm it was relatively easy
to deploy a framework of JupyterHub

!
!

Hardware Dedicated to Prototype
(Kubernetes Cluster)

Role Description CPU RAM

masters 2 x VMs living on old Dell machines 2 8GB

workers 4 x Dell R710s with disks for Rook.io 24 96GB

workers 3 x Sun X2200 (12 years old) 8 32GB

workers 5 x Sun X2200 (12 years old) 8 24GB

workers 2 x 4-in-2 Supermicro 16 64GB

workers 1 x 1U Supermicro 8 32GB

Making this a reality

*Diagram by Brian Bockelman

● Deployed Jupyterhub on bare OS to learn
Jupyterhub and CiLogon OAuth.

● Enabled token authentication in our Condor
infrastructure

● Second was to setup a kubernetes cluster and
use the “Zero 2 JupyterHub” (z2jh) project to put
together a basic JupyterHub instance.

● We then developed a highly customized “CMS
Analysis” container with all the necessary
dependencies.

● JupyterHub uses the KubeSpawner to create
new pods. We utilize a pod customization hook
to create secrets and services so the pod:

○ Can expose the Dask scheduler to the
outside world.

○ Can authenticate with services like
HTCondor and XRootD.

Making this a reality

*Diagram by Brian Bockelman

● Next, we needed to integrate XRootD!
○ Each pod’s unique secret includes an

auto-generated macaroon authorizing the pod to
access files at the site XCache server.

● Wrote a custom XRootD client plugin so whenever the
prefix root://xcache/ is used, then:

○ The hostname is replaced with the correct one for
the local site (using environment variables)

○ Token authorization is automatically used &
embedded in the URL.

● A custom XCache container was made to make GSI
auth optional and allow token auth after an
anonymous login.

See the plugin code:
https://github.com/bbockelm/xrdcl-authz-plugin

https://github.com/bbockelm/xrdcl-authz-plugin

Making this a reality

*Diagram by Brian Bockelman

● Finally, we use a slightly-patched version
of the HTCondorCluster integration from
dask to allow auto-scaling out to the local
HTCondor pool.

● Jobs run in the container on the
HTCondor worker node; HTCondor
exposes an incoming port to provide the
necessary connectivity.

● All of this is being incorporated into a
Helm chart -- many rough edges, but can
eventually be portable to other sites.

CMSAF @ UNL demo Setup

● JH setup: https://github.com/clundst/jhub (except specific secrets)

● Docker images for Dask Scheduler and Worker:
https://github.com/oshadura/coffea-casa

○ https://hub.docker.com/r/oshadura/coffea-casa
○ https://hub.docker.com/r/oshadura/coffea-casa-analysis

● Docker image for JupyterHub (to get macaroons in the launch env)
https://github.com/clundst/jhubDocker

● Showcase: https://github.com/mat-adamec/cmsaf-jh_showcase

https://github.com/clundst/jhub
https://github.com/oshadura/coffea-casa
https://hub.docker.com/r/oshadura/coffea-casa
https://hub.docker.com/r/oshadura/coffea-casa-analysis
https://github.com/clundst/jhubDocker
https://github.com/mat-adamec/cmsaf-jh_showcase

CMSAF @ UNL XCache setup

● https://github.com/bbockelm/xrdcl-authz-plugin

$ BEARER_TOKEN_FILE=~/projects/xrdcl-authz-plugin/xcache_token

XCACHE_HOST=red-xcache1.unl.edu

XRD_PLUGINCONFDIR=~/projects/xrdcl-authz-plugin/build/release_dir/etc/xr

ootd/client.plugins.d/ xrdcp -f

root://xcache//store/data/Run2017B/SingleElectron/MINIAOD/31Mar2018-v1/60000/9E0F8458-EA37-

E811-93F1-008CFAC919F0.root /dev/null

Looking for token in file /home/cse496/bbockelm/projects/xrdcl-authz-plugin/xcache_token

[3.65GB/3.65GB][100%][==][934.5MB/s]

https://github.com/bbockelm/xrdcl-authz-plugin
http://red-xcache1.unl.edu/

Conclusions
■ Work remains.

■ Some aspects of the HTCondor integration are slap-dash

■ Integrating the native dask scheduler with condor jobs
would make scaling trivial.

■ Lots of scaling tests needed, both in terms of the jobs and
the user base.

■ Deployment needs cleaned up and site specific
customizations need removed and made more
maintainable.

Backup

JupyterHub + JupyterLab + Dask setup @ UNL

● JH is launched using Helm charts (together with users secrets)

CILogon

We will likely replace this with CMS Auth.
http://oauth.web.cern.ch/

http://oauth.web.cern.ch/

Login
● Docker image starting JupyterLab is integrated with

HTCondor Dask Scheduler communicating with T3
○ For this purpose we use Dask Labextention, which is

integrated in the Docker image

Can Run Using Built-in Dask Clustering on Host
CPUs

CMSAF @ UNL secrets
● All secrets are available in the directory /etc/cmsaf-secrets at container startup

(but doesn’t exist at build time)
● The BEARER_TOKEN_FILE environment variable is going to be set to

/etc/cmsaf-secrets/bearer_token, matching what's expected in the XrdCl plugin.
● /etc/cmsaf-secrets/condor_token is a condor IDTOKEN useful for submitting to

T3.
● /etc/cmsaf-secrets/ca.key is a CA private key useful for Dask
● /etc/cmsaf-secrets/ca.pem is a CA public key useful for Dask
● /etc/cmsaf-secrets/hostcert.pem is a host certificate and private key useful for

the Dask scheduler.
● /etc/cmsaf-secrets/usercert.pem is a user certificate and private key useful for

the Dask workers.

HTCondor integration

jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu : <129.93.239.166:9618?... @ 05/25/20 19:46:47
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
cms-jovyan ID: 1586949 5/23 19:21 _ _ _ 1 1586949.0

Total for query: 1 jobs; 1 completed, 0 removed, 0 idle, 0 running, 0 held,
0 suspended
Total for cms-jovyan: 1 jobs; 1 completed, 0 removed, 0 idle, 0 running, 0
held, 0 suspended
Total for all users: 14313 jobs; 1 completed, 0 removed, 14310 idle, 2
running, 0 held, 0 suspended

Demo backup

Demo backup

Demo backup

jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu : <129.93.239.166:9618?... @ 05/27/20 08:58:07
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
cms-jovyan ID: 1981982 5/27 08:22 _ _ _ 1 1981982.0
cms-jovyan ID: 1981983 5/27 08:22 _ _ _ 1 1981983.0
cms-jovyan ID: 1981984 5/27 08:39 _ 1 _ 1 1981984.0
cms-jovyan ID: 1981985 5/27 08:40 _ 1 _ 1 1981985.0
cms-jovyan ID: 1981986 5/27 08:51 _ 1 _ 1 1981986.0
cms-jovyan ID: 1981987 5/27 08:51 _ 1 _ 1 1981987.0
cms-jovyan ID: 1981988 5/27 08:51 _ 1 _ 1 1981988.0
cms-jovyan ID: 1981990 5/27 08:51 _ 1 _ 1 1981990.0
cms-jovyan ID: 1981991 5/27 08:51 _ _ _ 1 1981991.0
cms-jovyan ID: 1981992 5/27 08:51 _ 1 _ 1 1981992.0
cms-jovyan ID: 1981993 5/27 08:51 _ 1 _ 1 1981993.0
cms-jovyan ID: 1981994 5/27 08:51 _ 1 _ 1 1981994.0
cms-jovyan ID: 1981995 5/27 08:51 _ 1 _ 1 1981995.0
cms-jovyan ID: 1981996 5/27 08:51 _ 1 _ 1 1981996.0
cms-jovyan ID: 1981997 5/27 08:51 _ 1 _ 1 1981997.0
cms-jovyan ID: 1981998 5/27 08:51 _ 1 _ 1 1981998.0
cms-jovyan ID: 1981999 5/27 08:51 _ 1 _ 1 1981999.0
cms-jovyan ID: 1982000 5/27 08:51 _ 1 _ 1 1982000.0
cms-jovyan ID: 1982001 5/27 08:51 _ 1 _ 1 1982001.0
cms-jovyan ID: 1982002 5/27 08:51 _ _ _ 1 1982002.0
cms-jovyan ID: 1982003 5/27 08:51 _ 1 _ 1 1982003.0
cms-jovyan ID: 1982004 5/27 08:51 _ 1 _ 1 1982004.0
cms-jovyan ID: 1982005 5/27 08:51 _ 1 _ 1 1982005.0

Total for query: 23 jobs; 4 completed, 0 removed, 0 idle, 19 running, 0 held, 0 suspended
Total for cms-jovyan: 23 jobs; 4 completed, 0 removed, 0 idle, 19 running, 0 held, 0 suspended
Total for all users: 418 jobs; 4 completed, 0 removed, 1 idle, 411 running, 2 held, 0 suspended

