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Leveraging large data and data analysis tools from python to provide
an array-based syntax for manipulating HEP event data.

Stark contrast to venerable, well established event loop techniques.

Tremendous potential to fundamentally change the time-to-science in
HEP. '

Scales well horizontal

Cannot easily utilize current
analysis facilities (T2s) as the
analysis is not grid friendly, it's
meant to be quasi-interactive

________________________
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The Present Challenge

- Analyze all LHC Run 2 data: O(10 billion events)

- Investigate data quality issues with fast time-to-insight

- Optimize complex (e.g. deep learning algorithms)

Multiply by O(1000) data analysts ..
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“Dask is a flexible library for parallel computing in Python.”

Think of Dask as run-time parallel + cluster plugin for
python

Easily installed via Conda as the module “distributed”.

NOT really designed with multi-user

. . . P User-facing entry
environments in mind | ctiene | AT
out-of-the-box. -

Integrates with HPC clusters Scheduler [t i e 10wt

running a variety of schedulers o
including SLURM & HTCondor —— ——— ==

cluster

via “dask-jobqueue”. Worker orkes Worker

Workers compute tasks / store and serv
computed results to other workers or

7 DASK




Emerging Facility Requirements

. Analysis Facilities must be (according to me):
- Easy to use for users

- Scalable (dynamically/automatically)
- Responsive/lnteractive

- Utilize currently deployed hardware/middleware
- Minimally intrusive for site administrators

- Get work (‘effort’ & CPU) accounted for by CMS
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Usage Patterns Are Changing
Resources Should Change, Too




T2 Nebraska
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*Diagram by Brian Bockelman
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User’s Laptop

Python | Browser
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Dask Dask
Worker 1 ™ Scheduler M
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Worker 8 kernel
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' XCache
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certalin Areas

User’s Laptop User Management at the T2s is (and will
continue to be) a non-starter. User

Python | Browser _
/ \ ' I access management will have to be done at

need to be done long term.

e / ___________ . S U _____Lanother administrative level (SSO)

: | ] 1 !

(|| Dask || Dask || |Jupytertiud ] A T2 admins have Limited Experience
JlEl e ‘ < — with Kubernetes. (But solid experience with
: Dask Jupyter | [] , < Docker. )

i || Worker 8 kernel

; Per-user Performance can be sensitive to caching,

| OMS Analysls” pod integration and performance studies

’ XCach
Kubernetes ( ! ) (sharec Not clear how well things will perform

@L‘EIEL_ - = P using AAA + batch.

Little to no operational experience at
Nebraska T2 for JupyterHub management.
Our colleagues in Holland have
experience using it for our HPC clusters.




nt: Sorted

User’s Laptop User Management at the T2s is not feasible.
User access management will have to be

Python | Browser
7 \ ' I done at another administrative level (SSO)

|| Dask Dask |

, | | HTCondor V
|| Worker 1 [ | Scheduler [ i o
. : Dask
: Dk Jupyter L : ! Worke
E Worker 8 kernel : i

i Per-user E |

| “CMS Analysis” pod ' [HTCondor V
i i : Dask
| ¢ Worke

' XCache -
\ Kubernetes ® (shared))

Initial deploy uses CiLogon and a whitelist

™
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les: Sorted

Inexperience with JupyterHub

Excellent documentation and institutional
knowledge beyond the T2 admins got us

by..




User’s Laptop

Python | Browser
[ \
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Dask Dask
Worker 1 ™ Scheduler ™

Dask Jupyter
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“ C
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Inexperience with Kubernetes -
______________ !
HTCondor V |
Dask /
Worke

HTCondor V
Dask

' Kubernetes ( ! S
A5
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Worke

Utilizing Z2JH and helm it was relatively easy
to.deploy a framework of JupyterHub




to Prototype
(Kubernetes Cluster)

Role Description CPU RAM
masters 2 x VMs living on old Dell machines 2 8GB

workers 4 x Dell R710s with disks for Rook.i0 24 96GB
workers 3 x Sun X2200 (12 years old) 8 32GB
workers 5 x Sun X2200 (12 years old) 8 24GB
workers 2 X 4-1n-2 Supermicro 16 64GB
workers 1 x 1U Supermicro 8 32GB



User’s Laptop

Browser

I N

Dask ™ Dask
Worker 1 Scheduler

JupyterHub Instance
(shared)

Dask Jupyter

!

Worker 8 kernel
Per-user

“CMS Analysis” pod

Kubernetes

! Cluster

_________________________________________________

IS a reality

Deployed Jupyterhub on bare OS to learn
Jupyterhub and CiLogon OAuth.

Enabled token authentication in our Condor
infrastructure

Second was to setup a kubernetes cluster and
use the “Zero 2 JupyterHub” (z2jh) project to put
together a basic JupyterHub instance.

We then developed a highly customized “CMS
Analysis” container with all the necessary
dependencies.

JupyterHub uses the KubeSpawner to create
new pods. We utilize a pod customization hook
to create secrets and services so the pod:
o Can expose the Dask scheduler to the
outside world.
o Can authenticate with services like
HTCondor and XRootD.

*Diagram by Brian Bockelman



S a reality

Per-user

“GMS Analysis” pod the local site (using environment variables)

o Token authorization is automatically used &

Wsers Laptop o Next, we needed to integrate XRootD!
Py}hon Brow\ser o Each pod’s unique secret includes an
2. Connect from/terminal 1.S\tiart Instance auto-generated macaroon authorizing the pod to

{a—— S — R—— | access files at the site XCache server.
|l Dask Dask JupyterHub Instance
|| Worker 1| Scheduler (shared) : :
L R e Wrote a custom XRootD client plugin so whenever the
|| Dask Jupyter prefix root://xcache/ is used, then:

Worker 8 kernel ; o The hostname is replaced with the correct one for

ouer embedded in the URL.
! XCache e A custom XCache container was made to make GSI
(shared) auth optional and allow token auth after an
\ anonymous login.

See the plugin code:
https://github.com/bbockelm/xrdcl-authz-plugin

*Diagram by Brian Bockelman


https://github.com/bbockelm/xrdcl-authz-plugin

User’s Laptop

| Python | Browser |
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! || Worker 8 kernel ol .
| =2 B — VLY HTCondor |
I S P Scheduler i
! CSiAnalysia: pad | | |HTCondor Worker i
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reality

Finally, we use a slightly-patched version
of the HTCondorCluster integration from
dask to allow auto-scaling out to the local
HTCondor pool.

Jobs run in the container on the
HTCondor worker node; HTCondor
exposes an incoming port to provide the
necessary connectivity.

All of this is being incorporated into a

Helm chart -- many rough edges, but can
eventually be portable to other sites.

*Diagram by Brian Bockelman



0 Setup

JH setup: https://qgithub.com/clundst/jhub (except specific secrets)

Docker images for Dask Scheduler and Worker:

https://github.com/oshadura/coffea-casa
o https://hub.docker.com/r/oshadura/coffea-casa

o https://hub.docker.com/r/oshadura/coffea-casa-analysis

Docker image for JupyterHub (to get macaroons in the launch env)
https://qithub.com/clundst/jhubDocker

Showcase: https://github.com/mat-adamec/cmsaf-jh_showcase



https://github.com/clundst/jhub
https://github.com/oshadura/coffea-casa
https://hub.docker.com/r/oshadura/coffea-casa
https://hub.docker.com/r/oshadura/coffea-casa-analysis
https://github.com/clundst/jhubDocker
https://github.com/mat-adamec/cmsaf-jh_showcase

e setup

e https://github.com/bbockelm/xrdcl-authz-plugin

$ BEARER_TOKEN_FILE=~/projects/xrdcl-authz-plugin/xcache_token
XCACHE_HOST=red-xcachel.unl.edu

XRD_PLUGINCONFDIR=~/projects/xrdcl-authz-plugin/build/release_dir/etc/xr
ootd/client.plugins.d/ xrdcp -f
root://xcache//store/data/Run2017B/SingleElectron/MINIAOD/31Mar2018-v1/60000/9EOF8458-EA37 -
E811-93F1-008CFAC919F0.root /dev/null

Looking for token in file /home/cse496/bbockelm/projects/xrdcl-authz-plugin/xcache_token
[3.65GB/3.65GB][100%] [ ==================================================][934.5MB/s ]



https://github.com/bbockelm/xrdcl-authz-plugin
http://red-xcache1.unl.edu/

. Work remains.

. Some aspects of the HTCondor integration are slap-dash

. Integrating the native dask scheduler with condor jobs
would make scaling trivial.

. Lots of scaling tests needed, both in terms of the jobs and
the user base.

. Deployment needs cleaned up and site specific
customizations need removed and made more
maintainable.




Backup




@ UNL

e JH is launched using Helm charts (together with users secrets)

Z Jupyterhub

CMS Analysis Facility @ T2 _US_ Nebraska

Authorized CMS Users Only!

To login into Jupyter, use your CiLogon credentials.. |f you would like an account or need assistance, please email HCC Support.

Useful Links

e HCC Support Pages

News
« New CMS Analysis Facility @ T2_US_Nebraska

Authorized CMS Users Only:
Sign in with ClLogon




CiLogon

Consent to Attribute Release

cmsaf-jh.unl.edu requests access to the following information. If you do not approve this request, do not proceed.

 Your ClLogon user identifier
* Your email address
* Your username and affiliation from your identity provider

Select an Identity Provider

CERN~ @

H Remt  1yne 1o search

LEIHUU UE COWUIUS IVIVHELQNUD y FilaluIEIuS

Centro de Investigacion Cooperativa en Biomateriales
By selecting"Logon CENUrO de Investigaciones Energeticas, Medioambientales y Tecnologicas
Centro de Investigacion y Tecnologia Agroalimentaria de Aragén

Centro de Supercomputacion de Galicia

Centro Informatico Cientifico de Andalucia

Centro Nacional de Investigaciones Cardiovasculares

Centro Nacional del Hidrogeno

Centrum Wiskunde & Informatica

CEREQ - Centre d'Etudes et de Recherches sur les Qualifications

CERN

CESNET

AETEM  Fantea Aa Taanalasia Minacal

ith CMS Auth.
rn.ch/



http://oauth.web.cern.ch/

e Docker image starting JupyterLab is integrated with
HTCondor Dask Scheduler communicating with T3
o For this purpose we use Dask Labextention, which is
iIntegrated in the Docker image

Server Options

® Coffea Base Image
Oksana's build with coffea/dask/condor and cheese

Minimal environment

o
To avoid too much bells and whistles: Python.
@) Datascience environment
If you want the additional bells and whistles: Python, R, and Julia.
@) Spark environment

The Jupyter Stacks spark image!




Clustering on Host

File Edit View Run Kernel Git Tabs Settings Help

X | ;¢ Dask Workers X | [ adl1.ipynb ®

dask/dashboard/8f1fb6c5-3e5c-4e73-b173-f18b" Q § B Terminal 4
'3+ X O M » m C » Code v @© git

' mosm@:;‘ ]u&w&s‘l

- PROGRESS i H‘GRU,

[471:. output = processor.run_uproot_job(fileset,
treename="Events’,
processor_instance=Processor(),
executor=processor.dask_executor,
executor_args={'client': client},
chunksize = 2500000)

]bwsmemm’ [HEHEp S R ] | 100% Completed | 36.3s

[év i 1 (481: hist.plotld(output['MET'], overlay='dataset', fill opts={'edgecolor': (9,0,0,0.3), 'alpha': ©.8})
CLUSTERS (C + NEW

N

/opt/conda/1lib/python3.7/site-packages/mplhep/_deprecate.py:56: DeprecationWarning: kwarg "densitym
on "histplot" is deprecated and may be removed in future versions: "unit"mode is not useful

LocalCluster 2 return func(*args, **kwargs)

Scheduler Address: tcp://127.0.0.1:42175 4 <matplotlib.axes._subplots.AxesSubplot at @x7ff6ccb98110>
Dashboard URL: http:// 0.0.1:8787/status

Number of Cores: 8 30 1e6

Memory: 33.73 GB B MET

Number of Workers: 4

<>

0 20 40 60 80 100
MET [GeV]

[401: for key, value in output['cutflow'].items():
print(key, value)

all events 53446198
number of chunks 21




ecrets

All secrets are available in the directory /etc/cmsaf-secrets at container startup
(but doesn’t exist at build time)

The BEARER TOKEN _FILE environment variable is going to be set to
/etc/cmsaf-secrets/bearer _token, matching what's expected in the XrdCI plugin.
/etc/cmsaf-secrets/condor _token is a condor IDTOKEN useful for submitting to
T3.

/etc/cmsaf-secrets/ca.key is a CA private key useful for Dask
/etc/cmsaf-secrets/ca.pem is a CA public key useful for Dask
/etc/cmsaf-secrets/hostcert.pem is a host certificate and private key useful for
the Dask scheduler.

/etc/cmsaf-secrets/usercert.pem is a user certificate and private key useful for
the Dask workers.




jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu : <129.93.239.166:9618?... @ ©05/25/20 19:46:47
OWNER  BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
cms-jovyan ID: 1586949 5/23 19:21 1 1586949.0

Total for query: 1 jobs; 1 completed, © removed, © idle, © running, © held,
© suspended

Total for cms-jovyan: 1 jobs; 1 completed, © removed, © idle, © running, ©
held, @ suspended

Total for all users: 14313 jobs; 1 completed, © removed, 14310 idle, 2
running, © held, © suspended




= JupyterLab x|+

(€)»> ¢ & | @ & https://cmsaf-jh.unl.edu/user/oksana.shadura@cern.ch/lab? 80% | @ W noee® =
File Edt View Run Kemel Git Tabs Settings Help
= " L] * [ ¢ @ Terminal 1 X | ® adit.ipynb
m / coffea-casa-example / B + XO O » = C » Ccode v @ e Python3 O
O Name - Last Modified !
2 from distributed. svcuu( import Securit:
- data 22 minutes ago fron coffea import nist s 2
m logs. 21 minutes ago from coff ! objects import JaggedC: ray
o import coffea.processor as processor
FS @ adltpy 22 minutes ago from dask.distributed import Client, LocalCluster
| coffea-casa. 22 minutes ago from dask_jobqueue import HTCondorCluster
from dask_jobqueue.htcondor import HTCondorJob
@ coffea-casa... 22 minutes ago =
@ ¥ README.md 22 minutes ago fileset =
‘Jets': ( ‘?Hes" ['root://ecspublic.cern.ch//eos/root-ecs/benchmark/Run2012B SingleMu.root'],
reename’: ‘Events'
5]
}
h # This program plots an event-level variable (in this case, MET, but switching it is as easy as a dict-key change). It also demonstrates an easy use of the book-keeping cutflow tool, to keep track of the number of events processed.
# The processor class bundles our data analysis together while giving us some helpful tools. It also leaves looping and chunks to the framework instead of us.
O class METProcessor (processor.ProcessorABC):
__init_ |
# Bins and :ategcnes for the histogram are defined here. For format, see https://coffeateam.github.lo/coffea/stubs/coffea.hist.hist tools.Hist.html & https://coffeateam.github.io/coffea/stubs/coffea.hist.hist tools.Bin. html
self. column: T |
* dansetinxls nist.ca?("ﬂﬂnse!'. ixhil
[ = hist.Bin("MET", "MET [Gev]", 50, @, 100}
# The accumulator keeps our data chunks together for histogramming. It also gives us cutflow, which can be used to keep track of data.
self. accumulator = processor.dict_accumulator({
‘MET': hist.Hist("Counts", dataset _axis, MET axis),
‘cutflow': processor. de'un\ldxcliac:\muhlor(iM)
b
@property
def accumulator(self):
rn self. accumulator
@property
def columns(self):
return self. columns
def process(self, df):
output = self.accumulator.identity()
# This is where we do our actual analysis. The df has dict keys equivalent to the TTree's.
dataset = df['dataset’']
MET = df['MET pt']
# We can define a new key for cutflow (in this case 'all events'). Then we can put values into it. We need += because it's per-chunk (demonstrated below)
output['cutflow']['all events'] += MET.size
output['cutflow']['number of chunks'] += 1
# This fills our histogram once our data is collected. Always use .flatten() to make sure the array is reduced. The output key will be as defined in _ init for self. accumulator; the hist key ('MET=') will be defined in the bin.
output['MET'].fill(dataset=dataset, MET=MET.flatten())
return output
def postprocess(self, accumulator):
return accumulator
L sec_dask = Security(ﬂs ca_file='/etc/cmsaf-secrets/ca.pem’,
/etc/cmsaf-secrets/usercert.pem’,
t\s ,_worker_key='/etc/cnsaf-secrets/userkey.pen',
tls_: 5(bedu\er cert='/etc/cmsaf-secrets/hostcert.pem',
tls_ schedu\er key='/etc/cmsaf-secrets/hostkey.pem’,
require_encryption=True)
HTCondorJob. submit_command = "condor_submit -spool"
cluster = HTCondorCluster{cores=4,
scheduler __options= ( ‘dashboard_address":"8786","port":8787, "external address": "129.93.183.33:8787"},
# HTCondor submit script
job_ exlra"{ ‘'universe”: "docker", # =>Brian's test
# Generated in coffea-casa:latest
#"encrypt_input files /etc/cmsaf-secrets/xcache token
#"docker _networ “host",
"docker image": ”oshadura/coffea casa-analysis:0.1.1", # or docker image # =>Brian's test
"container service names": "d:
"dask_container port' 737
“should transfer files": "YES",
"when to transfer output": "ON EXIT"
)
distributed.scheduler - INFO - Clear task state
distributed.scheduler - INFO -  Scheduler tcp://192.168.49.178:8787
distributed.scheduler - INFO -  dashboard a
1M1 @ Python3|idle Saving completed

Mode: Command @ Ln1,Col 1 _adiLipynb




= JupyterLab
€)» e 0

= File Edt View Run Kemel

¥ 0 ¢# B & & O O @#

+ ®
W/ coffea-casa-example |
Name
- data
 logs.

2 adllpy
[ coffea-casa-nanotestipynb
@ coffea-casa-nanotest.py

# README.md

x|+

|© & https://cmsaf-jh.unl.edu/user/oksana.shadura@cern.ch/lab?

Git Tabs Setfngs Help

ES c ©

x Last Modified
16 minutes ago

15 minutes ago

16 minutes ago

16 minutes ago
16 minutes ago

16 minutes ago

@ Terminal 1
B + X

adit ipynb
fH [ » m C » code v O e

SortedDict({})
cluster. scale(jobs=16)

client = Client(cluster)#, securityssec dask)

distributed.core - INFO - Event loop was unresponsive in Scheduler for 36.31s. This is often caused by long-running GIL-holding functions or moving large chunks of data. This can cause timeouts and instability.

distributed.scheduler - INFO - Register worker <Worker 'tcp://129.93.182.169:32769', name: @, memory: ©, processing:

distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.169:32769

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register worker <Worker 'tcp://129.93.182.61:32769', name: htcondor--1981987.8--, memory: 6, processing: 6>
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.61:32769

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register worker <Worker ‘tcp://129.93.182.12:32777', name: htcondor--1981986.0--, memory: 0, processing: 6>
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.12:32777

distributed.core - INFO - sumnu established connection

distributed, scheduler - INFO - Receive client : Client. £7-11

distributed.core - INFO - surnng established connectio

/opt/conda/1ib/python3.7/site-packages/distributed-2.16. m 9f66edas.dirty-py3.7.egg/distributed/client.py:1115: VersionMismatchiWarning: Mismatched versions found

distributed

| | version |

.16.0+0.9f66eda86.dirty
+16.0+0.0f66eda86. dirty

client 12
|2
[ 2.17.
12
12

|

| scheduler

1 : //119 93.182.12:
| t

|

up //lzs 931182.6

1]
.17.0
17.0

warnings. sion nodule. ["warning]))

#cachestrategy = 'dask-worker'
exe a

‘client': client,
gty L e straten

#'savenetrics':

R Goikar: afFinity £ Trua T cachust categy s iot Nona wise) False;

}
output = processor.run uproot job(fileset,
cename = 'Events
processor_instance = METProcessor(),
executor = processor.dask_executor,
executor args = exe args

[ ] | 0% Completed | ©.4s

distributed, scheduler - INFO - Register worker <Worker 'tcp://129.93.182.61:32768', name: htcondor--1981985.0--, memory: 0, processis
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.61:32768

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register worker <Worker 'tcp://129.93.182.12:32776', name: htcondor--1981984.0--, memory: 0, processing: 0>
distributed.scheduler - INFO - Starting worker compute stream, tcp://129.93.182.12:32776

distributed.core - INFO - Starting established connection

i | 0% Completed | 0.5s

distributed.scheduler - INFO - Reglster worker torker tcp://129.03.162.12:32178"  nane: htcondor--1981998.0--, mesory: O, processing: &>
distributed, scheduler - INFO - Starting worker compute stream, tcp://129.93.182.12:32778

distributed.core - INFO - smung established connection

| 160% Completed | Inin 6.1s

# Generates a 1D histogram from the data output to the 'MET' Key. fill opts are optional, m fill the graph (default is a line).
hist.plotld(output['MET'], overlay='dataset', fill opts={'edgecolor': (0,0,0,0.3), 'alpha': 0.8})
/opt/conda/1ib/python3. 7/51(: -packages/mplhep/_deprecate.py:56: DeprecationWarning: kwarg "densitymode” in function "histplot" is deprecated and may be removed in future version:
return func(*args, **kwal
mn\p\onnz.axes._subp\a(s.nxesSubnlol at x716d61d2cadex>
1e6

"unit"mode is not useful

= s

0 ©
MET (Gev]

: # Easy way to print all cutflow dict values. Can just do print(output['cutflow' ]["KEY NAME"]) for one.

for key, value in output['cutflow'].items()
print (key, value)

all events 53446198

80%

noee® %

pythons O

number_of chunks 534




jovyan@jupyter-oksana-2eshadura-40cern-2ech:/opt/app$ condor_q

-- Schedd: t3.unl.edu : <129.93.239.166:96187... @ 05/27/20 08:58:07
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

cms-jovyan ID: 1981982 5/27 08:22  _ _ _ 11981982.0
cms-jovyan ID: 1981983 5/27 08:22  _ _ _ 11981983.0
cms-jovyan ID: 1981984 5/27 08:39  _ 1 _ 11981984.0
cms-jovyan ID: 1981985 5/27 08:40  _ 1 _ 11981985.0
cms-jovyan ID: 1981986 5/27 08:51  _ 1 _ 11981986.0
cms-jovyan ID: 1981987 5/27 08:51  _ 1 _ 11981987.0
cms-jovyan ID: 1981988 5/27 08:51  _ 1 _ 11981988.0
cms-jovyan ID: 1981990 5/27 08:51  _ 1 _ 11981990.0

cms-jovyan ID: 1981991 5/27 08:51 11981991.0

cms-jovyan ID: 1981992 5/27 08:51  _ 1 _ 11981992.0
cms-jovyan ID: 1981993 5/27 08:51  _ 1 _ 11981993.0
cms-jovyan ID: 1981994 5/27 08:51  _ 1 _ 11981994.0
cms-jovyan ID: 1981995 5/27 08:51  _ 1 _ 11981995.0
cms-jovyan ID: 1981996 5/27 08:51  _ 1 _ 11981996.0
cms-jovyan ID: 1981997 5/27 08:51  _ 1 _ 11981997.0
cms-jovyan ID: 1981998 5/27 08:51  _ 1 _ 11981998.0
cms-jovyan ID: 1981999 5/27 08:51  _ 1 _ 11981999.0
cms-jovyan ID: 1982000 5/27 08:51  _ 1 _ 11982000.0
cms-jovyan ID: 1982001 5/27 08:51  _ 1 _ 1 1982001.0

cms-jovyan ID: 1982002 5/27 08:51 11982002.0

cms-jovyan ID: 1982003 5/27 08:51  _ 1 _ 11982003.0
cms-jovyan ID: 1982004 5/27 08:51  _ 1 _ 11982004.0
cms-jovyan ID: 1982005 5/27 08:51  _ 1 _ 11982005.0

Total for query: 23 jobs; 4 completed, 0 removed, 0 idle, 19 running, 0 held, O suspended
Total for cms-jovyan: 23 jobs; 4 completed, O removed, 0 idle, 19 running, 0 held, 0 suspended
Total for all users: 418 jobs; 4 completed, 0 removed, 1 idle, 411 running, 2 held, 0 suspended




